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Resumo

Nos últimos anos, temos assistido ao nascimento da primeira geração de fontes laser de alta energia e

eficiência no infravermelho médio (MIR), região espectral dos 2 – 12 μm. Esta tese reporta o primeiro

conjunto de experiências com o novo sistema laser de MIR localizado no Laboratório de Lasers Inten-

sos (L2I) no Instituto Superior Técnico de Lisboa (IST), sob a alçada do Grupo de Lasers e Plasmas

(GoLP), afiliado ao Instituto de Plasmas e Fusão Nuclear (IPFN). Este é o primeiro laser ultracurto e de

alta energia no MIR em Portugal,e um dos poucos em existência nos 3 μm.

O sistema é baseado em Amplificação Óptica Paramétrica de Pulsos Chirpados (OPCPA) usando um

laser de bombeamento de 1.03 μm que gera impulsos com uma taxa de repetição de 100 kHz, cada

um com uma duração de 1 ps. O resultado final são pulsos de 40 fs emitidos a 100 kHz nos 3 μm.

Estes pulsos são emitidos com uma potência média de 6.5 W, energia de 65 μJ, uma intensidade focal

de 2 × 1015 W/cm2, potência de pico de 1.7 GW, e um rácio de Strehl > 0.7. Infelizmente, devido

à actual situação pandémica, as condições de funcionamento foram sub-óptimas durante as nossas

experiências, estando o sistema a ser realinhado pelos fornecedores.

As nossas experiências consistiram em alargamento espectral não linear a 1.03 μm, Geração de Super-

contı́nuo (SCG) a 3 μm, e geração de harmónicos a 3 μm. Aqui são descritas as montagens experimen-

tais juntamente com os dados experimentais das interacções laser-sólido. Finalmente, os resultados

são comparados com dados publicados com a identificação dos parâmetros para interacções de óptica

não linear de alta eficiência.

Palavras chave
Alargamento Espectral; Geração de harmónicos; Geração de altos harmónicos; Infravermelho médio;

Óptica não linear; Supercontı́nuo
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Abstract

During the last few years, we have witnessed the birth of the first generation of high-energy and high-

efficiency laser sources in the Mid-Infrared (MIR) spectral region, 2 – 12 μm. This thesis reports the first

set of experiments with the new MIR laser system at the Laboratory of Intense Lasers (L2I) in Instituto

Superior Técnico de Lisboa (IST), under the management of the Group of Lasers and Plasmas (GoLP),

affiliated with the Instituto de Plasmas e Fusão Nuclear (IPFN). This is the very first ultrashort, high-

energy MIR laser system in Portugal, and one of the few in existence at 3 μm.

The system is based on Optical Parametric Chirped-Pulse Amplification (OPCPA) using a laser pump of

1.03 μm generating pulses at a repetition rate of 100 kHz, each with a duration of 1 ps. The final output

are 40 fs pulses delivered at 100 kHz in the 3 μm. These pulses are emitted with: an average power of

6.5 W, energy of 65 μJ, focused intensity of 2 × 1015 W/cm2, 1.7 GW of peak power, and a Strehl ratio

> 0.7. Unfortunately, due to the current pandemic, the condition of the system was sub-optimal during

our experiments, and is currently being realigned by the suppliers.

Our experiments consisted of nonlinear spectral broadening at 1.03 μm, Supercontinuum Generation

(SCG) at 3 μm, and harmonic-generation at 3 μm. Here we describe the experimental setups together

with data from the laser-solid interactions. Finally, the results are compared with published data with

identification of the critical parameters for high efficiency nonlinear optical interactions.

Keywords
Harmonic generation; High-Harmonic Generation; Mid-infrared; Nonlinear optics; Spectral broadening;

Supercontinuum
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In the past two decades, there has been a growing interest and investment in the study of ultrafast optics

and ultrafast science in the Mid-Infrared (MIR), 2 – 12 μm spectral region. This is largely due to the fact

that the fundamental vibrational absorptions of most molecules reside within this range, leaving distinc-

tive spectral fingerprints, which are of key importance for industrial, medical, and scientific applications.

During the last few years, we have witnessed the birth of the first generation of high-energy and high-

efficiency laser sources in the MIR region. The introduction of such sources opened the doors to a

variety of new and exciting applications, in particular in the branch of ultrafast science. Some of the

most notable applications of MIR ultrafast sources are succinctly introduced below [1].

• Supercontinuum generation, a process where an intense laser pulse propagates through a non-

linear medium leading to an ultrabroad, continuous output spectrum. Supercontinuum light sources

are generally used for purposes where one requires light with a broad optical bandwidth and a high

degree of spatial coherence so that the light can be well collimated and focused. For example, opti-

cal coherence tomography, fluorescence microscopy, flow cytometry, the characterization of optical

devices, the generation of multiple carrier waves in optical fiber communications systems, and the

measurement of the carrier-envelope offset frequency of frequency combs [2].

• Frequency comb consists of an optical spectrum composed of periodic lines. Frequency combs

were first introduced in the 1990s and started to attract a lot of attention since the 2005 Nobel Prize

in Physics [3]. MIR mode-locked laser sources are probably the most general, reliable, naturally

low-noise, and compact choice for the generation of such spectra with applications such as high-

resolution/sensitivity spectroscopy, optical clocks frequency metrology, optical sensing, distance

measurements, laser noise characterization, telecommunications, and fundamental physics [2].

• Spectroscopy with ultrafast MIR pulses has been of key importance in the fields of molecular

science and solid-state physics, due to its high sensitivity and resolution over a broad spectral

domain. For example, it has allowed us to observe the structural dynamics of molecules, such as

vibrational mode coupling, as well as charge transfer and free-carrier dynamics in semiconductors

[4–7].

• Material processing based on ultrashort MIR laser pulses has become quite popular in recent

years, in particular in materials like silicon and germanium that are opaque in the visible and near-

infrared but transparent in the MIR. In theory, ultrashort MIR laser pulses could be applied in

microfabrication to create complex three-dimensional optical circuits directly inside silicon, over-

coming problems that current lithography cannot overcome; and could also be used to achieve

kerfless processing of silicon replacing the current use of diamond saws to separate wafers from

the silicon bulk. Another use, already demonstrated [8], is the cutting and welding of polymers with

such ultrashort MIR laser pulses.
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• Laser surgery and biodiagnostics have found a powerful weapon in ultrafast MIR laser pulses.

Mainly due to the presence of the vibrational absorption band of water molecules within tissues

in the 3 μm region, making it so that MIR radiation is absorbed in a few microns. In a minimally

invasive surgical environment picosecond-level pulses are short enough to drive tissue ablation

faster and with less damage to the surrounding tissue (< 10 μm) than the most common processes

(scalpels, > 400 μm, and conventional medical lasers, > 800 μm) [9]. Additionally, it has been

proven that the damage from these pulses heals much faster, and that the remaining scars are

half the size and with less probability of infection than other conventional methods.

At the end of the year 2020, Instituto Superior Técnico de Lisboa (IST) acquired one of these new laser

sources. This custom-made system is now installed in the Laboratory of Intense Lasers (L2I), a facility

managed by the Group of Lasers and Plasmas (GoLP) at Instituto de Plasmas e Fusão Nuclear (IPFN)

and is the first ultrashort, high-energy MIR laser system in Portugal. Not only that but this device has an

output at 3 μm which, even within high-energy lasers working in the MIR, is extremely rare due to the

innate inefficiency of the most gain materials at this wavelength. On top of being the first of its kind in

the country, there are only a handful of similar laser systems in Europe.

The scope of this thesis is centered on exploring the capabilities of the new state-of-the-art MIR laser

system installed at L2I, in particular its characterization and the development of the first series of exper-

iments, and is divided in the following main components:

• Spectral broadening at 1.03 μm and Supercontinuum Generation (SCG) at 3 μm

• Harmonic generation at 3 μm

In Chapter 2 we briefly discuss the physical principles and specifications of the laser system used in the

experiments. Chapter 3 is dedicated to spectral broadening, starting with a short theoretical overview,

followed by the presentation of the experimental setup, results, and discussion for input pulses at 1.03 μm

and 3 μm. This chapter ends with numerical simulations to support the results obtained at 1.03 μm. The

generation of harmonics is then presented in Chapter 4 in a similar structure to Chapter 3, except for

the simulations where we instead present a brief overview of some of the existing methodologies for the

simulation of harmonic generation. Finally, Chapter 5 is dedicated to the conclusions, including a quick

review of the main results of Chapters 3 and 4, finalizing with remarks on possible future works.

1.1 Mid-Infrared laser systems

The rapid advances in material research over the past decade have allowed the development of many

new MIR gain materials with excellent optical and mechanical properties for the generation of ultrashort

pulses, leading to the first generation of high-efficiency, low cost, compact MIR laser systems. However,
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Figure 1.1: Laser systems (∼ 3 μm, < mJ) around the world.

the presence of the vibrational modes that we want to explore leads to great losses in most materials,

significantly limiting the availability of gain media and saturable absorbers for the development of laser

sources. For this reason, in the early 2000s, MIR laser sources were seldom and normally extremely

complex, expensive, and inefficient [1].

Even within the MIR region, the wavelengths around 3 μm can be extremely elusive. In fact, just a few

years ago there were no efficient high-energy laser sources at this wavelength. For example, quantum

cascade lasers at room temperature only operated properly above 3.5 μm, conventional silica fiber lasers

could only generate up to 2.5 μm and many alternatives had stability and optical damage problems [10].

Today, however, there are already some efficient laser sources that are now entering the market, but

naturally, these systems are still a tiny share compared with, for example, the 2 μm lasers.

The new system at IST is precisely one of these extremely rare, state-of-the-art 3 μm laser systems. Fig-

ure 1.1 shows the pulse energy vs. pulse duration for comparable laser systems worldwide, highlighting

the parameters of the IST system.

1.2 Supercontinuum Generation

SCG has been studied extensively during the last 50 years in a multitude of nonlinear media since it

was first observed by Alfano et al [11] in 1970. In a pioneering experiment, 5 mJ picosecond pulses at

530 nm were propagated in BK7 glass, leading to an output spectrum covering the entire visible range
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from 400 to 700 nm. The nonlinear broadening was not a complete novelty at the time, however, what

differentiated this experiment from previous works was the extent of the generated light spectrum, being

10 times greater than anything observed before. Curiously enough their work was dedicated to the first

identification of nonresonant four-photon coupling, i.e., Four-Wave Mixing (FWM) so the term ”super-

continuum” was only established in 1985 by Manassah et al [12].

In the following years, a variety of experiments were performed using different propagation media, mainly

with nonlinear crystals and waveguides but also, on a smaller scale, air and noble gases. However, the

input pulses were mainly in the visible or Near-Infrared (NIR). Only around the 2010s, we started to

observe SCG based on MIR pulses, mainly due to the lack of efficient sources as mentioned.

1.3 High-Harmonic Generation

High-Harmonic Generation (HHG) in a gas medium is the oldest and most well-established way to gen-

erate high harmonics up to the extreme ultraviolet range. One of the earliest observations of HHG was

made by Ferray et al [13] in 1988 by propagating 1064 nm, 30 fs laser pulses at 10 Hz into Ar, Kr, and

Xe gases, achieving the 33rd, 29th and 21st harmonic, respectively. An interesting property of HHG

in gases is that the maximum harmonic achievable grows, approximately, with the square of the input

pulse wavelength [14], which implies that (at the same level of intensity) a lower frequency laser is ac-

tually capable of achieving much higher harmonics than a higher frequency one, and thus covering a

greater spectrum. Possibly, the most famous experiments of gas-based HHG, where precisely this effect

can be observed, was published in 2012 by Popmintchev et al [15], where they guided pulses centered

at a wavelength of 3.9 μm into a waveguide filled with He and achieved harmonics greater than 5000,

creating a supercontinuum spanning from the MIR to the soft X-rays.

Even though HHG has been observed for over 30 years, it took over two decades to achieve it in solid

media, mainly because, in solids, the harmonics generated are strongly absorbed by the material itself

and are more susceptible to self-action effects (both in time and space) [16]. The first successful result

was reported by Ghimire et al [17] in 2011 where they obtained up to the 25th harmonic in a zinc oxide

(ZnO) crystal injected with 3.25 μm laser pulses. The output takes the form of a train of short chirped

pulses, one for each half-cycle of the input pulse. Each one of these short pulses has a spectrum in the

form of a frequency comb in which the lines are separated by 2ω0, where ω0 is the input pulse central

frequency. The main advantage of this technique is that we can generate extremely short pulses, down

to attosecond duration, with an extremely large spectrum, in some cases thousands of harmonics, form-

ing a supercontinuum. These pulses form the basis of attosecond science, in particular spectroscopy

and imaging [18].
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In this chapter, we present briefly the characteristics of the laser system used in the experiments

(Fig.2.1), together with a short explanation of the mechanisms behind their operation. Naturally, we

cannot go into much detail to avoid revealing information under protection by the suppliers of the lasers,

therefore we will only comment on what is available to the general public.

The system consists of a 1.03 μm pulsed laser source that can be used directly in the experiments or as

a pump of a second device, which is based on Optical Parametric Chirped-Pulse Amplification (OPCPA),

to generate 3 μm pulses. A collection of the main output parameters of the two systems is presented in

Table 2.1.

Figure 2.1: MIR laser system installed at L2I. The white device on the left corresponds to the 1.03 μm pump. while
the blue device at the right performs the OPCPA to generate the 3 μm laser pulses.

Table 2.1: Specifications of the two laser systems used in this thesis.

System Wavelength Average Power Repetition rate Energy per pulse Pulse duration

Pump by AMPHOS 1030 nm 100 W 100 kHz 1 mJ 1 ps

OPCPA by FASTLITE 3000 nm 6.5 W 100 kHz 65 μJ 40 fs
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2.1 Pumping

The pump system is a Amphos2000, commercialized by AMPHOS, which is based on a diode-pump

solid state Yb:YAG resonator coupled with InnoSlab amplification [19].

The system is specified to generate pulses with a length of 0.9 – 10 ps, a repetition rate of 100 kHz, and

power up to 100 W. Unfortunately, due to the current pandemic of COVID-19, and consequent traveling

restrictions, this system could not be fully installed and optimized, as this procedure must be performed

by AMPHOS technical staff. Because of this, the max output power was reduced to about 82 W and the

beam was slightly elliptical, with an ellipticity of ∼ 0.8.

To perform OPCPA the pump is set to generate pulses with a repetition rate of 100 kHz and duration of

1 ps. The average power of the beam is then set to slightly above 75.5 W, ensuring that the OPCPA

system is working in a saturation regime so that any fluctuation of the pump power does not affect the

3 μm output.

2.2 Optical Parametric Chirped-Pulse Amplification

The system for OPCPA is a custom made Starzz model created by FASTLITE, which is based in SCG fol-

lowed by multiple stages of Optical Parametric Amplification (OPA), also known as Difference-Frequency

Generation (DFG)1. Since SCG will be discussed in detail in Chapter 3 we will just review quickly the

physical principles of the OPA and finish this chapter with a overview of Starzz system.

First, OPA is a phenomenon only observable in the nonlinear optics regime, which is many times referred

to as DFG. As the name of the latter suggests this phenomenon allows to obtain a new frequency that

is equal to the difference of the input frequencies. To achieve this we introduce two beams of different

frequencies inside a nonlinear media, Fig.2.2. The one at a higher frequency, ωp, is called a ”pump”

while the lower frequency, ωs, is called the ”signal”. Some of the photons from the pump will excite the

material to a virtual level, which is not an energy eigenlevel of the free atom but rather represents the

combined energy of one of the energy eigenstates of the atom and one or more photons of the radi-

ation field. According to the uncertainty principle, a population can reside in a virtual level for a time

interval of the order of h̄/δE, where δE is the energy difference between the virtual level and the nearest

real level [20]. This excitation will lead either to the spontaneous emission of a pump photon or to the

stimulated emission of a signal photon due to the presence of the signal. In the case of stimulated emis-

sion the number of photons of frequency ωs increases and therefore the energy of the signal beam is

amplified, hence the name Optical Parametric Amplification. However, after the stimulated emission the

1While the physical principle is the same, in practice OPA and DFG serve different purposes. While OPA is used to amplify
signals, DFG is used to generate signals in different wavelengths.
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media will be in an excited state of energy h̄ωi, which will lead to the spontaneous emission of a photon

of frequency ωi = ωp – ωs, hence the name Difference-Frequency Generation. This will result in a new

beam commonly called ”idler”, which in some cases can be our desired output. For amplification pur-

poses, the remaining pump and the idler are, normally, filtered after the OPA leaving only the amplified

signal. In the case of Fig.2.3 we can observe that the pump is not filtered immediately after the DFG, this

is because we have another OPA stage after and the remaining pump can be used. The main issue of

simple OPA is that the media will be exposed to a considerable amount of energy in an extremely short

time, which can easily damage the solid materials used during the amplification. To prevent this, one

relies on OPCPA. In this case, before the OPA the pulse is temporally stretched, by introducing chirp,

and temporally compressed after the OPA, by removal of said chirp [2], in both cases by using a carefully

designed dispersion device. Chirp is usually understood as the time dependence of its instantaneous

frequency2, in essence, the different frequencies that constitute the pulse travel different optical paths

so that some of the frequencies are ”faster” or ”slower” than the rest leading to temporal stretching or

compression. In OPCPA, since the pulses are stretched, when they arrive at the OPA stage, the media

only interacts with a fraction of the power of the original pulse, which avoids damage and, therefore,

allows amplifying pulses with higher energy than what regular OPA would allow.

Finally, regarding the Starzz (Fig.2.3), the 1030 nm beam generated by the Amphos2000 is divided into

Figure 2.2: Schematics of OPA or DFG. On the left there is a macroscopic view in which the pump (blue; ωp) and
the signal (green; ωs) interact inside a nonlinear media, resulting in energy loss by the pump, energy
gain by the signal, and the emission of a third frequency commonly known as idler (red; ωi). On the
right, the band structure of this process where a pump photon excites the material to a virtual level,
which leads to the emission of a signal photon by stimulated emission followed by emission of one idler
photon by spontaneous emission.

multiple beams, with most being directed to the different stages of OPA to serve as a pump. Note that the

2The first temporal derivative of the pulse’s phase [2].
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internal optics are designed so that the pump and signal pulses arrive simultaneously at each amplifica-

tion stage. A fraction of the 1030 nm pulse is used to perform SCG generating a broad spectrum pulse

around 1550 nm that is then filtered and stretched. This pulse is then sent to the first OPA as a signal

to increase its energy and then introduced in the Dazzler. The Dazzler, an acousto-optic modulator, is

a FASTLITE tool for compression optimization and Carrier-Envelope Phase (CEP) stabilization. From

there the beam enters a stage of DFG where the idler that comes from this process at 3 μm becomes the

new signal that feeds two consecutive stages of OPA, for these stages note that the pump is removed

immediately after. Finally, the 3 μm pulse goes through a compressor that removes its chirp leading to

temporal compression. This system was designed to work in a saturation regime, by receiving short

pulses of 1 ps at 100 kHz with an average power of 75.5 W and an ellipticity of 1. The final output is a

pulsed 3 μm beam which consists of short 40 fs pulses delivered at 100 kHz and an average power of

6.5 W. However, since the pump at the time was below the specified requirements the average power

was around 4.8 W.

Figure 2.3: Schematic of the 3 μm laser system.
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In the beginning, spectral broadening was performed based solely on linear effects. However, as laser

systems became more and more powerful a new range of nonlinear phenomena became available.

Among these, nonlinear broadening allowed generating wider spectral widths and consequently shorter

pulses. In some cases, the spectra were so large that the term supercontinuum was born. A supercon-

tinuum, many times referred to as a white-light laser, is characterized by an ultrabroad continuous spec-

trum, although the term ”continuous” can be relaxed. Naturally, the generation of high-energy ultrashort

pulses with an ultrabroad spectrum is of great scientific and technological interest. The applications of

supercontinuum include, but are not limited to, optical coherence tomography, fluorescence microscopy,

flow cytometry, characterization of optical devices, generation of multiple carrier waves in optical fiber

communications systems, and the measurement of the carrier-envelope offset frequency of frequency

combs [2]. Another application, that we observe in this work, is actually in the 3 μm laser system itself

where the OPCPA enclosure includes a stage of SCG to generate pulses at 1.55 μm ( Fig.2.3).

In this chapter we present the results of spectral broadening in the normal and anomalous dispersion

regime, the latter leading to SCG. We also present a simulation of spectral broadening in the normal

regime with a discussion on the implications on the nonlinear interactions inside the media.

3.1 Physical principles in solid materials

3.1.1 Self-Phase Modulation

As the name indicates, Self-Phase Modulation (SPM) is the modulation of the phase of the wave due

to a self-generated phase, φSPM, caused by the intensity-induced variation of the medium’s refractive

index. Let us consider an optical pulse with an electric field given by

E(z, t) = A(z, t)ei(ω0t–k0z) + c.c. = A(z, t)eiω0(t– n
c z) + c.c, (3.1)

where A(z, t) is the complex field envelope, z the position, t is time, ω0 the central frequency, k0 = ω0n/c

the wavenumber, n the refractive index of the medium, and c the speed of light in vacuum. Now let us

propagate this pulse in a medium of refractive index:

n(t) = n0 + n2I(t), (3.2)

where I(t) = |A(z, t)|2 is the intensity, and n0 and n2 are the linear and nonlinear refractive indexes,

respectively. The dependence of n with I is known as the optical Kerr effect, which is associated with

a χ(3) electric susceptibility, such that the polarization of the medium, P, possesses a linear and cubic

dependence on the electric field:
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P = ε0χE = ε0χ
(1)E + ε0χ

(3)|E|2E

χ = χ(1) + χ(3)|E|2.
(3.3)

where ε0 = 8.854 × 10–12 F/m is the electric permittivity of vacuum. Due to this, materials that present

this kind of behaviour are many times called Kerr or χ(3) (Chi-3) materials, while materials that present

a square dependence (Pockels effect) are referred to as Pockels or χ(2) (Chi-2) materials. In general

the term n2I is many times smaller than n0, since the magnitude of n2 ranges from 10–20 to 10–6 m2/W

[14], therefore we can only observe this kind of effects when I(t) reaches extremely high values, e.g.

∼ 1013 W/m2 for fused silica [20].

Combining equations 3.1 and 3.2 we obtain inside the complex exponential term [21,22]
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c

z
)

= –
ω0z

c
n2

dI(t)
dt

. (3.6)

Equation 3.6 describes the frequency shift, Δω, induced by the additional phase, φSPM. As we can see,

in the case of e.g. a regular Gaussian pulse the front of the pulse (dI(t)/dt > 0 ⇒ Δω < 0) will be

shifted to lower frequencies (red/Stokes shifted) while the the back of the pulse (dI(t)/dt < 0⇒ Δω > 0)

will shift to higher frequencies (blue/Anti-Stokes shift). These shifts are responsible for broadening the

pulse spectrum and will induce up-chirp in the pulse in the center of the pulse (Fig.3.1), meaning that

the instantaneous frequency increases.

3.1.2 Self-steepening

We have just seen that the intensity dependence of the refractive index can lead to changes in the pulse

spectrum. In this section, we talk about one of the temporal consequences of this dependence.

From equation 3.2 we see that the refractive index can have a temporal dependence, which is critical in

the propagation of laser pulses since the intensity changes with time. Because of this the center of a

Gaussian pulse, where the intensity is higher, experiences a much higher refractive index, and conse-
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Figure 3.1: Instantaneous frequency of an initially unchirped pulse which has experienced self-phase modulation.
The central part of the pulse exhibits an up-chirp. Taken from [2].

quently lower group velocity, than its wings. This would make the center of the pulse, apparently, ”move”

to the back of the pulse, leading to an increase of the slope in that region (Fig.3.2). This self-induced

steepening of the trailing edge of the pulse is known as self-steepening, while the resulting sharp inten-

sity gradient is referred to as an optical shock.

One additional mechanism for self-steepening is the production of free1 electrons [21] by the peak of

Figure 3.2: Formation of a light bullet and consequent self-steepening during propagation in fused silica. z is the
propagation distance. Taken from [23].

the pulse, which reduce the refractive index. In this situation, only the back of the pulse will propagate

in these electrons, which will make it faster than the rest of the pulse, thus increasing further the steep-

ening.

Self-steepening does not induce spectral broadening by itself, however when combined with SPM is

one of the most crucial mechanisms in SCG. As we have seen in section 3.1.1 the frequency shift is

proportional to dI(t)/dt, because of self-steepening the back of the pulse will have a much sharper slope,

meaning a much higher value of dI(t)/dt, leading to a much greater blue-shift and therefore a larger

spectral broadening in the higher frequency range.

1Electrons whose kinetic energy is large enough that they can move through the lattice without being trapped by localized
potential wells.
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3.1.3 Self-focusing, filamentation and conical emission

One of the most important consequences of SPM is self-focusing [22, 24]. As we see in equation 3.2,

when an optical beam crosses a material exhibiting the optical Kerr effect the refractive index will change

in a pattern equal to the transverse intensity distribution of the beam. If the intensity is maximum at the

center of the beam and then strictly decreases to its edges, e.g. Gaussian beam, the material will act as

a positive lens focusing the beam inside the medium.

The critical power necessary to achieve self-focusing with a Gaussian beam is given by [24]

Pc =
3.77λ20
8πn0n2

, (3.7)

where λ0 is the central wavelength. The propagation distance until the focus plane is given by [24]

zf =

√
0.135k0w2

0[(√
P
Pc

– 0.852
)2

– 0.0219
] 1

2

, (3.8)

where w0 is the waist radius of the beam.

As the beam self-focuses, the intensity in the center increases leading to the creation of free electrons.

This increased electronic density will lead to self-defocusing. At some point, the intensity will be high

enough to counteract the self-focusing (clamping intensity). Once this happens, the intensity will drop

reducing the electronic density and therefore the self-defocusing, allowing the beam to once again self-

focus and restart the cycle. This will generate a series of energetic ”hot spots” along the propagation axis

many times known as filaments [21, 22, 25]. This localized increase in intensity and electronic density

can increase dramatically the broadening, as such it is one of the main mechanisms behind SCG.

The formation of these filaments leads to a gradient of electronic density in the direction of propagation

Figure 3.3: Plasma fluorescence traces in a YAG crystal induced by self-focusing of 100 fs, 800 nm input pulses with
energies of (a) 310 nJ, (b) 560 nJ, that induce a single self-focusing event and refocusing of the filament,
respectively. (c) and (d) show the corresponding far-field patterns of supercontinuum emission. Note
the conical emission pattern surrounding the white-light (supercontinuum). Taken from [25].
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but also in the transverse plane of the beam. The latter can cause frequency-dependent divergence

forming rainbow rings of light around the main beam with the higher frequencies further from the axis

(see e.g. Fig.3.3). This phenomenon is known as conical emission [21,22].

3.1.4 Effects of dispersion on Supercontinuum Generation

Dispersion is a linear phenomenon in which the refractive index of a medium depends on the frequency

of the propagating light. For propagation purposes this phenomena is described by a mode propagation

constant, β, normally defined in a Taylor expansion [26]:

β(ω) = n(ω)
ω

c
= β0 + β1(ω – ω0) +

1
2
β2(ω – ω0)2 + ..., βm =

(
dm
β

dωm

)
ω=ω0

. (3.9)

Since β1 = 1/vg, where vg is the group velocity, then β2 = dβ1/dω describes the variation of group velocity

with the frequency. Because of this β2 is commonly known as Group Velocity Dispersion (GVD) [26].

Dispersion is many times classified into normal (β2 > 0; higher frequencies travel slower) and anomalous

dispersion (β2 < 0; higher frequencies travel faster).

In normal dispersion (Fig.3.4a and Fig.3.4d), since SPM induces red and blue-shift in the front and back

of the pulse, respectively, the effect can lead to the formation of two sub-pulses moving in opposite

directions in the pulse’s frame (pulse splitting). This is followed by a considerable broadening due to

self-steepening, higher in the blue-shift than in the red-shift, capable of forming a supercontinuum [25].

One must notice that this can compete with filamentation since the added electronic density makes the

back of the pulse move faster and normal dispersion slower.

As for anomalous dispersion (Fig.3.4c and Fig.3.4f) the opposite occurs and the pulse self-compresses

in the time domain [25, 27], a phenomenon often referred to as light bullet [23, 28]. The formation

of light bullets increases the intensity and, together with filamentation, improves self-steepening, thus

potentiating a larger SCG. In this regime SCG is also marked by the formation of isolated spectral wings

in the visible spectral region, which seem to be associated with the superposition of light waves that

were scattered by the polarization waves [29] caused by the passage of the pulse.

For wavelengths near the zero dispersion (Fig.3.4c and Fig.3.4e), the resulting broadening is much

more symmetric than the previous regimes and combines some of the aspects of the two, although the

temporal evolution of the pulse is much more similar to the one observed in the normal regime, even for

the slightly anomalous wavelengths, since the dispersion is too low to self-compress the pulse [25].

3.1.5 Stimulated Raman Scattering

In section 2.2 we saw that OPCPA allows converting a high-energy photon (pump) into two lower energy

photons: one by stimulated emission due to the presence of a signal beam; and one by spontaneous
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Figure 3.4: Top row: numerically simulated temporal dynamics of 100 fs laser pulses propagating in sapphire crystal
with the input wavelengths of (a) 800 nm, (b) 1.3 μm, (c) 2.0 μm, representing the filamentation regimes
of normal, zero and anomalous GVD, respectively. Bottom row shows the corresponding spectral dy-
namics. Notice, how the spectral broadening in the regimes of normal and zero GVD is associated with
the pulse splitting, and the spectral broadening in the regime of anomalous GVD is associated with
pulse self-compression. Taken from [25].

emission with the remaining energy from the pump (idler). In this mechanism, the medium itself should

remain unchanged since it returns to the ground state, which is, in short, the definition of a parametric

process. Stimulated Raman Scattering (SRS) (Fig.3.5) is quite similar to OPCPA, the difference lying in

how the extra energy from the pump photon is released. While in OPCPA this energy goes to the idler

photon, in SRS that energy is transferred to the vibrational modes of the medium [14].

This process does not generate the supercontinuum as a stand-alone. However, if other mechanisms

have previously generated photons with different frequencies, then SRS can use them as signal and/or

pump, broadening the pulse even more. Note that this added broadening will be into the lower frequen-

cies since SRS can only generate photons of lower energy than the pump (Stokes shift). Although the

SRS response is of extreme importance when working with optical fibers, it is negligible as long as the

propagation length is shorter than the dispersion length [26], which is given in terms of the pulse width

T0 as LD = T2
0/|β2|.
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Figure 3.5: Schematic of SRS. Left: macroscopic view in which the pump (blue; ωp) and the signal (green; ωs)
interact inside a nonlinear medium where there is an excitation of vibrational modes. Right: band
structure of this process, where a pump photon excites the material to a virtual level, which leads to
the emission of a signal photon by stimulated emission, while the excess energy is transferred to a
vibrational mode of the medium, (black dashed; h̄ωr). The medium has a gain curve with a certain
bandwidth, (red; Δh̄ω), which goes to zero as h̄ωr ≈ 0.

3.2 Experimental Work

3.2.1 Setup

The data for SCG at 3 μm is the result of a ”failed” attempt to acquire harmonics where the continuum

masked the harmonic signal. This data was obtained with a standard spectrometer based in Si with a

spectral range of 147 – 1127 nm. Unfortunately, this does not include the entirety of the supercontin-

uum, for that we would need to also measure the spectrum with a MIR spectrometer and possibly a

Ultraviolet (UV) spectrometer, which can be rather expensive.

For the generation of harmonics, we started with a low-power setup, however as some of our more

interesting samples did not produce any visible results we changed to a high-power setup, Fig.3.6. In

both cases, 40 fs laser pulses centered at 3 μm with an average power of 4.8 W and repetition rate

of 100 kHz are sent to a telescope composed by a 200 mm and a 100 mm focal lenses (f1 and f2,

respectively) placed 300 mm apart, in order to resize and collimate the beam radius to fit the remain-

ing components. Then the beam was redirected and focused (lens f3) on a sample window, place in a

rotation mount attached to a translation stage, for the generation of harmonics, or in this case supercon-

tinuum. The output of the sample is then collimated by a 75 mm focal lens (f4) into a dispersion prism to

separate the different components of the spectrum.

To measure the supercontinuum we sent all of these components to an integrating sphere connected
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Figure 3.6: Experimental setup for the acquisition of SCG at 3 μm. Top: setup with 10% of the output power using
a wedge. Bottom: setup with the full power.

by an UV optical fiber to a spectrometer (FLEX-STD-UV-Vis-NIR, SARSPEC). However, to protect the

UV optical fiber, which was not made to handle high-power in the MIR, we placed a beam dump in front

of the fundamental beam. The two setups displayed in Fig.3.6 differ mainly in two aspects: the amount

of energy sent to the sample and the nature of the focus. In the low-power (∼ 0.48 W) setup, after the

telescope, the beam is split by a calcium fluoride wedge that sends only around 10% of the beam power

to the sample. The beam then goes through a tight focus to increase the intensity in the sample. On the

other hand, in the high-power (4.8 W) setup, the full power is sent to the sample by a silver mirror but

with a softer focus. The reason for the softening is to avoid damaging the samples.

We also tried to perform SCG at 1.03 μm resulting in a nonlinear spectral broadening but not at a scale

that could be labeled as supercontinuum. The power of the laser was set to the maximum output de-

livering 1 ps laser pulses a 100 kHz. The beam then crosses a power control stage consisting of a
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half-wave plate (rotates the beam’s polarization) and a polarizer, which sends 82 W to the rest of our

setup. This control stage is only used during some diagnostics of the AMPHOS system so during our

experiments nearly all the power was sent to the samples and any small portion crossing the polarizer

was blocked by a beam dump. Then the beam is focused by a lens with a focal length of 400 mm. The

samples for spectral-broadening were then placed slightly after the focus in order for the beam to be

diverging as it enters the sample to counteract the effect of self-focus, and therefore reduce the possi-

bility of catastrophic collapse of the pulse or damage to the samples. The broadened pulse was then

sent to an integrating sphere connected by an optical fiber to a spectrometer (FLEX-STD-UV-Vis-NIR,

SARSPEC). However, because the energy of the beam is too high to pass through our UV optical fiber

we first use a wedge to only reflect 10% of the energy to a series of 7 absorptive filters (NENIR, THOR-

LABS) with growing Optical density (OD) in the following sequence: OD=0.1, 0.2, 0.3, 0.4, 0.5, 0.6 and

1. The increase of the OD prevents that a single filter absorbs too much energy and gets damaged. The

setup is presented in Fig.3.7.

Figure 3.7: Experimental setup for the acquisition of spectral broadening at 1.03 μm.

3.2.2 Methods and Results

3.2.2.1 Supercontinuum Generation at 3 μm

We observed SCG with a total of 6 samples: Infrared (IR) grade CaF2 (3 mm thick), UV grade fused

silica (5 mm), sapphire (1 mm), and three samples of undoped yittrium aluminium garnet (YAG) (1 mm,

2 mm and 4 mm). This data should be taken as a proof of concept for future experiments with this laser

system. A possible explanation as for why it was not possible to achieve SCG in the 1.03 μm is related

to the different dispersive regimes since the anomalous regime potentiates a larger spectral broadening,
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Figure 3.8: Group Velocity Dispersion for the four samples used in the spectral broadening at 1.03 μm. Calculated
with the code in listing B.2.

as mentioned in section 3.1.4. In fact, all the samples used exhibit anomalous dispersion around 3 μm,

whereas at 1.03 μm they exhibit normal dispersion, Fig.3.8. We notice that in Fig.3.9 we can see only

the wings of the supercontinuum. This observation is in agreement with previous experimental works in

the anomalous dispersion regime using MIR sources up to 2.5 μm [29–31].

In particular the spectra of CaF2 and fused silica which present a similar shape to the ones observed

in [30] with an input laser field at 2.2 μm. One must also notice that when we tried a 1 mm CaF2 sample

no supercontinuum was generated, even at high-power. The obtained spectra are depicted in Fig. 3.9.

The YAG samples generated supercontinuum in the low-power (0.48 W) setup with the wedge, and

as such we never observed clean harmonics in these samples. The other samples only generated

supercontinuum in the high-power (4.8 W) system using the mirror. Additionally, in Fig.3.9d we see a

sharp increase in the count rate and the formation of a peak near the 1100 nm when the propagation

length increases from 1 mm to 2 mm but a very small variation when increasing further to 4 mm. One

possibility is that, unlike the larger samples, in the smaller sample the beam could not propagate enough

to form a long filament thus reducing the SCG.

This strong dependence on the propagation distance is also reflected in our 1 mm sapphire sample (the

thinnest of this set of experiments) which presents the smaller wings.

On a final note in the laboratory, we also observed the generation of conic emission, Fig.3.10, associated

with filamentation.

3.2.2.2 Spectral broadening at 1.03 μm

In order to correct the effect of the filters (Fig.3.7) in yield of the spectrometer the transmission data

from the manufacturer was interpolated, Fig.3.11. With this, we calculate the transmission at each point,

allowing to reconstruct the expected yield without filtering. The effect of the CaF2 wedge was neglected
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(a) CaF2 sample, 24.5 cm after focal lens. (b) Fused silica sample, 23.5 cm after focal lens.

(c) Sapphire sample, 23.5 cm after focal lens. (d) YAG samples, placed at focus.

Figure 3.9: Supercontinuum Generation at 3 μm.

Figure 3.10: Conical emission with a 3 μm laser. In the left with a 5 mm fused silica sample and in the right with a
4mm YAG sample. Note the white-light at the center of the beam (supercontinuum).
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as the transmission curve is flat in the spectral region of interest.

Figure 3.11: Interpolation of the multiplied data from all seven filters. In the inset the region of interest for Fig.3.12.

The overall results from the reconstructed data are depicted in Fig.3.12. The captions correspond to

the percentage of the full power sent to the sample while the inset depicts the variation of the spectral

full width at half maximum (FWHM) of the spectrum with the power. The FWHM was obtained from a

Orthogonal distance regression (ODR) fit to a Gaussian: a ·exp[–0.5(λ–μ)2/σ2], FWHM= 2
√

2 ln 2σ. The

entire data can be seen on Appendix A.

We started by placing a 5 mm thick UV grade fused silica sample 47 cm after the lens, then changed

the laser output power and acquired the spectrum for each value. In this case (Fig.3.12a) we observe

that for lower levels the increase of power only changes the rate of counts, but as the power is increased

the pulse energy starts to spread over a wider bandwidth leading to broadening that grows with power,

a clear signal of nonlinear broadening. Additionally we notice a small asymmetry in this broadening

with a more accentuated growth in the lower wavelengths/higher frequencies, in all likelihood due to

self-steepening.

When the fused silica sample was moved closer to the lens (45 cm apart) the observed broadening

increases due to the higher intensity. Here the broadening is significantly more visible, Fig.3.12b, and

the effect of self-steepening is considerably more apparent. As we moved the sample to 43.5 cm after

the lens, the intensity was enough to cause laser-induced damage at 25%, so the power was lowered to

21% to check the state of the spectrum. This is quite visible Fig.3.12c with a sharp drop in the measured

FWHM from 20% to 21% of power and the overall smaller broadening compared with Fig.3.12b and

Fig.3.12a. It is likely that up to 15% the material had already some superficial damage from the previous

experiments and at 25% the intensity was enough to damage the sample in the entirety of the beam’s

path. Upon closer inspection, the optical damage was not shaped as straight line, but instead as series

of damage spots crossing the sample. This was likely due to filamentation.
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(a) Fused silica sample 47 cm away from the lens. (b) Fused silica sample 45 cm away from the lens.

(c) Fused silica sample 43.5 cm away from the lens. (d) CaF2 sample.

(e) Sapphire sample, FWHM= 3.2 nm. (f) YAG sample.

Figure 3.12: Spectral broadening at 1.03 μm. The captions are the percentage of the full power (82 W) sent to the
sample. The insets depict the variation of FWHM with the power.
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In order to protect our samples the remaining experiments were performed 45 cm away from the lens.

When we used a 1 mm thick UV grade CaF2 window, Fig.3.12d, although we observe once again the

immediate increase of the broadening with power, the FWHM is much smaller than observed in all

other (non-damaged) samples. This can be associated with the propagation length being shorter when

compared to the other samples, thus reducing the magnitude of effects such as SPM, self-steepening,

self-focus, or filamentation that build up during propagation. In contrast, we took a single spectrum with

a 15 mm thick sapphire sample at 25% power, Fig.3.12e, which resulted in a higher broadening than for

CaF2 at full power proving the importance of long propagation distances. Finally, we used a 4 mm YAG

sample, Fig.3.12f, which depicted a remarkable asymmetry in the spectrum due to self steepening.

3.3 Numerical simulation of spectral broadening

3.3.1 Theoretical approach

In this section, we present the results of numerical simulations for spectral broadening at 1.03 μm, with

the goal of comparing them with the experimental results from the previous section. The absence of

published values for the nonlinear coefficient at 3 μm prevents us from performing simulation for that

wavelength.

Historically speaking the study of spectral broadening has been centered on optical fibers and therefore

there are yet no easy access/free software/codes to simulate nonlinear broadening in bulk crystals. As

such since the scope of this thesis is mainly experimental these simulations were performed using an

open-source Python package: PyNLO2.In particular, we take advantage of the crystal dispersion calcu-

lators and the solver for the propagation of light through a χ(3) optical fiber, in our case an ”equivalent”

optical fiber that represents our samples. The validity of our model is discussed at the end of this section.

The propagation is based on a Split-step Fourier Method to solve the Generalized Nonlinear Schrödinger

Equation (GNLSE) as described in [32]. The GNLSE employed takes the following form:

∂A
∂z

= –
α

2
–

∑
m≥2

βm
im–1

m!
∂m

∂tm

A
+ iγ

(
1 +

1
ω0

∂

∂t

)
×
(

(1 – fR)A|A|2 + fRA
∫ ∞

0
hR(τ)|A(z, t – τ)|2dτ

)
,

(3.10)

where α is the attenuation coefficient, βm the dispersion coefficients, γ the nonlinear coefficient, fR the

fractional contribution of the delayed Raman response to nonlinear polarization, and hR(t) is the Raman

2pyNLO-Nonlinear optics modeling for Python: https://pynlo.readthedocs.io/en/latest/readme_link.html and https:

//github.com/pyNLO/PyNLO, Version 0.1.2
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response function related to vibrations of the molecules.

The terms on the right-hand side represent respectively losses, dispersion, and nonlinear effects. In the

third term, iγ|A|2A corresponds to SPM and the temporal derivative includes self-steepening and optical

shock formation, while the integral describes the Raman response [32].

In the simulations presented in section 3.3.2 the attenuation coefficient is calculated as

α = –
ln T
L

, (3.11)

where T is the transmission of the material at 1.03 μm and L is the length associated with that transmis-

sion. The value of α for each sample is presented in Tab.3.1a.

The dispersion coefficients are given by the relations [26,33,34]:

β2(λ) = –
λ

2

2πc
D, βm(λ) =

dβm–1
dω

,

D(λ) = –
λ

c
d2n0
dλ2

,
(3.12)

where ω is the frequency, λ the wavelength, and D the dispersion parameter. The calculation of these

coefficients is performed using the calculators of the pyNLO package, where the calculation of n0 is

performed via the Sellmeier equations and coefficients for the different materials contained in an input

file. The values of (β2, β3, β4), obtained with the code in appendix B, are presented in Tab.3.1b.

The nonlinear coefficient is given by the following expression [26,34]:

γ =
2πn2
λ0Aeff

, (3.13)

where Aeff should be the fiber’s effective mode area. The value of γ was adjusted to fit the experimental

data. The expected area of the beam, Afree, both at the entrance and exit of each sample was calculated

for each sample. Here we assume a perfect Gaussian beam and the absence of changes in the beam’s

caustic due to the sample (free propagation). These values were then compared to the Aeff associated

with the adjusted value for γ, so that we can have an idea of how the interaction with the sample affected

the caustic. A more detailed approach is presented in section 3.3.2.1.

As for Raman, a simplified model is used for the response function [35]:

hR(t) =
τ

2
1 + τ22
τ1τ

2
2

e
– t
τ2 sin

(
t
τ1

)
. (3.14)

Due to the lack of information of SRS for all materials the following values were used for all simulations:

fR = 0.18, τ1 = 12.2 fs and τ2 = 32 fs. These values correspond to a fused silica optical fiber [36].

The approach of using an equivalent fiber has already been demonstrated in the context of spectral
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broadening in a Multipass cell (MPC) by Daher et al [37]. In particular, in the case where the two mirrors

of the MPC cause multiple passes in a bulk medium, the only correction concerning our model would

be the an extra term of β2 due to the Group delay dispersion (GDD) caused by the mirrors of the MPC.

As the silver mirrors we use have low GDD and only perform one reflection each, unlike the ones of

an MPC, our approach is still valid. However, the equation above is missing two key components of

spectral broadening in solids: self-focusing and filamentation. This is because the limited energy input

that fibers can handle does not normally allow for significant self-focus or filamentation, which might be

in fact something to avoid inside a fiber. This is the major limitation of our simulations, although we can

still use them to study the overall spectral broadening behavior.

3.3.2 Numerical values and results

3.3.2.1 Numerical values

We adjusted the value of γ to our experimental curves and calculated the associated value of Aeff by

equation 3.13. This would give us an idea of the size of the beam inside the sample which we can

compare to the expected transverse area of the beam, Afree, at the entrance and exit of the sample

assuming that the sample does not change the beam caustic. For that, we need to know the variation

of the beam radius with the position, w(z). As such we first had to calculate the beam waist w0 and its

position zref by measuring the transverse intensity of the beam with a camera. As the direct output of

the AMPHOS laser was too wide to fit our camera we had to resize it, using a lens with a focal length of

350 mm, placed 54 cm after the output, followed by another lens, placed 17.5 cm after, and with a focal

length of –200 mm. After this, the beam was sent to the camera to measure the beam radius3 in multiple

positions. The Gaussian beam radius is defined as the distance from the center of the beam where the

intensity drops to 1/e2 of the max intensity.

The obtained data was then fitted by an ODR to the following expression for a perfect Gaussian beam:

w(z) = w0

√√√√1 +

(
λ(z – zref)
πw2

0

)2

. (3.15)

In Fig.3.13 we present the result of this fit which allowed us to use a beam propagation software to trace

the variation of both values of w, including the effect of the lenses, and thus recover the parameters of the

laser output. Because the AMPHOS system could not be fully calibrated due to pandemic restrictions,

its output exhibits a slight ellipticity and therefore we have two values for the beam radius at each

propagation distance, wx and wy. We then proceed to calculate their variation until the sample, Fig.3.14.

3The radius was measured far away from the lenses because it was part of the preparation for a future experimental setup,
which could not be placed closer due to spacial limitations.
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Assuming that the beam forms an ellipse in the sample we can approximate the values of the beam’s

Figure 3.13: Reconstruction of the beam radius variation. On the right, we have a zoom in to the experimental data,
together with the fit (dashed lines) to equation 3.15 and the resulting parameters w0 and zref. These
parameters were then used as an input to a propagation software to make the backward propagation
of the beam through the lenses until the output of the AMPHOS laser, z = 0, which correspond to the
continuous lines on the left side. The dashed lines in the left figure represent the position of the two
lenses of focal length: f = 350 mm (black) and f = –200mm (red).

Figure 3.14: Variation of the beam radius until the sample, obtained with a propagation software. Here the values
of w0 and zref correspond to the laser’s propagation parameters, obtained from the study presented in
Fig.3.13. The dashed black line corresponds to the position of the f = 400 mm lens, while the red one
marks the position of the focus, 400 mm away from the lens. The upper axes depicts the distance to
the lens.

traversal area, assuming that the sample does not affect the caustic, by Afree = πwxwy.

The values of γ, Afree and Aeff are depicted in Tab.3.1c.

31



Table 3.1: Numerical values for simulation.

(a) Calculation of the attenuation coefficient α.

Sample Transmission (%) L (mm) α (1/m) Source

CaF2 93.75 10.00 6.46 EKSMA4

Fused Silica 92.12 10.00 8.20 LASEROPTIK5

Sapphire 87.29 5.00 27.19 THORLABS6

YAG 86.16 3.00 49.65 LAYERTEC7

(b) Calculation of the dispersion coefficients.

Sample β2 (ps2/km) β3 (10–2 ps3/km) β4 (10–5 ps4/km) Propagation length (mm) LD (m)

CaF2 18.49 2.03 -1.55 1 54.07

Fused Silica 18.97 4.12 -5.07 5 52.71

Sapphire 32.19 6.05 -6.77 15 31.06

YAG 66.68 6.74 -4.24 4 15.00

(c) Calculation of the nonlinear coefficient and transverse areas.

Sample
Distance to lens (mm) Afree (mm2)

n2 (10–16 cm2/W)
Simulations

Entrance Exit Entrance Exit γ (10–4 1/W · km) Aeff (mm2)

CaF2 450 451 0.168 0.174 1.71 [2] 40 0.026

Fused Silica

435 440 0.091 0.114

2.19 [2]

25 0.053

450 455 0.168 0.199 7.96 0.168

470 475 0.312 0.356 7.2 0.186

Sapphire 450 465 0.168 0.271 3.2 [38] 9 0.217

YAG 450 454 0.168 0.186 6.3 [2] 20.7 0.186

3.3.2.2 Results

The results of the simulations are presented in Fig.3.15, where in some cases the intensity is depicted

in decibel, IdB, such that:

IdB = 10 log10

(
I

max(I)

)
= 10 log10

(
|A|2

max(|A|)2

)
, (3.16)

4https://eksmaoptics.com/optical-components/uv-and-ir-optics/calcium-fluoride-caf2-windows-530-6251/
5https://www.laseroptik.com/en/substrates/standard-substrates/fused-silica
6https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3982
7https://www.layertec.de/en/capabilities/substrates/materials/
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where I is the spectrum with the highest number of counts in each one of the sub-figures of fig.3.12, and

A is the complex envelope resulting from the propagation algorithm of pyNLO. On the left side of each

figure, we compare the input spectrum (blue) with the output spectrum both through simulation (red)

and experiment (green), on the top the spectra are presented in decibel while at the bottom the spectra

are normalized such that the maximum is one. On the right, we present the spectral variation of the

simulated pulse with the propagation distance. The plots with decibels were truncated at –20 dB, which

corresponds to values 100 times smaller than the value at the peak.

Overall the simulations were able to replicate to a certain extent the observed spectra. In Table 3.13 we

notice the Aeff in many cases is smaller than Afree at the entrance of the samples. This implies that the

beam at some point suffered from self-focus inside these samples. The exceptions are the fused silica

sample placed 450 mm after the lens, the sapphire sample, and the YAG sample. For the case of the

fused silica, we have good agreement between when Aeff = AEntrance
free , but this still points to a self-focus.

In the absence of self-focus, we should obtain that AEntrance
free < Aeff < AExit

free, since the beam would be

diverging. So in this case the natural divergence of the beam must have counteracted the self-focus,

which was our objective when placing the samples after the focus, in order to prevent optical damage. In

the case of the sapphire as the AEntrance
free < Aeff < AExit

free we cannot guaranty that the beam self-focused

but we cannot exclude the possibility either. For YAG we used Aeff = AExit
free as a limit since it would not

make sense for the beam to become larger than that. But if we used a higher value that would lead to a

smaller broadening while a smaller value would lead to the formation of more peaks, which are already

forming in our simulation. A possibility is that the broadening generated in these samples was strongly

related to the formation of free electrons and the consequent self-steepening, which is not included in

equation 3.10.

In order to test the effect of each of the terms from equation 3.10, we turned off each term separately,

either by setting the α, βm, and γ to zero or by disabling SRS and self-steepening in the pyNLO package.

Unsurprisingly the absence of dispersion and/or SRS did not produce any effect on the final spectrum.

These two processes only become significant, at least without being combined with other processes,

when the propagation length is above the dispersion length [26]. And as we can see in Table 3.1b the

propagation length is many orders of magnitude below LD.

Disabling self-steepening also did not visibly change the spectrum, which was expected as none of the

final simulated spectra presents any kind of asymmetry, cf. Fig.3.15. The self steepening described

by the derivative in equation 3.10 results only from Kerr effects, but since it is not enough to explain

the asymmetry observed in the experimental data, even for a lower effective area, it is possible that the

self-steepening also resulted from a large electronic density.

The only visible changes were a consequence of either changing the value of α or γ. In the case in which
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(a) Fused silica sample 47 cm away from the lens. (b) Fused silica sample 45 cm away from the lens.

(c) Fused silica sample 43.5 cm away from the lens. (d) CaF2 sample

Figure 3.15: Simulation of spectral broadening at 1.03μm. Each experimental spectrum corresponds to the highest
energy for each sub-figure in Fig.3.12, with the exception of Fig.3.12c where we took the 20% spec-
trum (before damage). On the left is the comparison of the numerical input and output pulse together
with the experimental data. On the right is the numerical spectral variation with propagation. The
curves were truncated at –20 dB.
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(e) Sapphire sample. (f) YAG sample.

Figure 3.15: Simulation of spectral broadening at 1.03μm. Each experimental spectrum corresponds to the highest
energy for each sub-figure in Fig.3.12, with the exception of Fig.3.12c where we took the 20% spec-
trum (before damage). On the left is the comparison of the numerical input and output pulse together
with the experimental data. On the right is the numerical spectral variation with propagation. The
curves were truncated at –20 dB. (cont.)

we disregard losses (α = 0), the final spectra possess slightly larger broadening, however, we observed

the formation of more peaks around the central frequency. The change of γ produced the most drastic

spectral results, but even in these conditions self-steepening did not contribute to the spectrum. As

such the main contribution for the spectral broadening is indeed the nonlinear effects. The simulations

seem to indicate that the main mechanism would be SPM, but this does not explain the high asymmetry

presented by the spectra.

In conclusion, the simulations imply that the observed spectral broadening results from SPM. Where in

many cases the beam self-focused inside the media with the generation of free electrons that contribute

to a strong self-steepening. This points to the formation of filaments inside of our samples, which in the

case of fused silica is supported by the segmented optical damage that was observed.
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Under certain conditions, a high-intensity laser pulse propagating in a nonlinear medium can generate

a new wave with a different frequency that is multiple (or harmonic) of the input one.

The most common way of producing harmonics is the multiple absorption of photons, which is a pertur-

bative process related to the nonlinear response of the polarization inside the medium.

Another phenomenon characterized by this is High-Harmonic Generation (HHG), where the output takes

the form of a train of short chirped pulses, one for each half-cycle of the input pulse. The pulses can have

durations down to attoseconds and in some cases with a spectrum containing thousands of harmonics,

forming a supercontinuum. These pulses form the basis of attosecond science [18].

In this chapter we present the results of harmonic generation in a multitude of materials, comparing the

results with previous observations in literature. We also present a Fourier analysis of some spectra, to

test the possibility of formation of multiple components of third harmonic, and a efficiency study of the

harmonic generation. Finally, we present a short comment on some of the methodologies to simulate

harmonic generation.

4.1 Physical Principles

4.1.1 Perturbative Harmonic generation

In section 3.1.1 we used a simplified description of the polarization, P, for the explanation of the Kerr

effect in the refractive index, see Eq.3.3. A more generalized form is given by the perturbative relation

[20]

P = ε0
[
χ

(1)E + χ(2)E2 + χ(3)E3 + ...
]

, (4.1)

where χ(1) is the linear susceptibility and χ(n), n > 1 is the nth-order nonlinear susceptibility. This equa-

tion was written with scalars for simplicity and brevity but it can also be written using the vectorial nature

of E and P [20]. In such case χ(1) becomes a second-rank tensor, χ(2) a third-rank tensor, and so on.

Each of these susceptibilities leads to different physical phenomena. For example, one of the conse-

quences of χ(2) is Second Harmonic Generation (SHG), Fig. 4.1, where two photons of the input beam,

at frequency ω, cause an excitation to a virtual level that leads to the spontaneous emission of a single

photon at frequency 2ω in a single quantum process. In the same way, χ(3) allows for three photons

to participate in the excitation leading to the emission of third-order harmonics, also known as Third

Harmonic Generation (THG). And so on for all the higher values of n.

Because these processes are perturbative, unlike HHG, the efficiency of the harmonics drops signifi-

cantly with each order. For example, the calculated values of χ(2) and χ(3), using the typical characteris-

tics of most condensed matter, are around 6.9× 10–12 m/V and 344× 10–24 m2/V2 [20].
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Although the quadratic term should be much larger than the cubic one, in reality the simplified expres-

sion of equation 3.3 is enough to describe many interactions. The reason is that all even-order values

of χ(n) are equal to zero in a centrosymmetric medium, which includes isotropic media and 11 of the 32

crystal classes [20]. This can be understood by looking to the nth-order polarization, P(n),

P(n) = ε0χ
(n)En. (4.2)

Saying that a medium is centrosymmetric is like saying that it possesses an inversion symmetry. This

symmetry imposes that if the direction of the electric field reverses so must the polarization

–P(n) = ε0χ
(n)(–E)n

= ε0χ
(n)(–1)nEn

= (–1)nP(n).

(4.3)

As one can easily see from equation 4.3, when n is even the polarization must be zero, which implies

that χ(n) = 0. As such, as long as the medium is centrosymmetric it is impossible to observe even-order

phenomena such as even harmonic generation.

Figure 4.1: Schematic of SHG. Left: macroscopic view in which the input beam (red; ω) interact with a nonlinear
media, resulting in the formation of a new beam with twice the frequency of the input known as the
Second Harmonic (blue; 2ω). Right: band structure of this process where two input photons excite in
quick succession the material to a virtual level which then leads to the emission of a single Second
Harmonic photon by spontaneous emission.
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4.1.2 High-Harmonic Generation in gases (atomic)

In the case of low-frequency lasers, the theory behind HHG in gases can be reduced to a very simple

semi-classical model, first introduced by Corkum in 1993 [39], known as three-step recollisional model,

Fig. 4.2.

In this model, the gas atom is taken as a potential well, with a single electron, under the influence of a

monochromatic, linearly polarized electric field. This field oscillates with an amplitude E0, frequency ω0

(period T = 2π/ω0), and a photon energy h̄ω0 much smaller than the ionization potential of the atom, Ip,

so that normal absorption does not occur (low-frequency laser).

For explanation purposes, let us start from a state in which the electric field is zero and is about to be

accelerated in the +x direction, E > 0. HHG will then arise from the following steps [14,40]:

1. Tunneling: As the amplitude of the electric fields increases the potential well will tilt, due to the

extra potential added. At some point, this will form a potential barrier giving the electron the chance

to tunnel through and escape the atom at zero velocity. The time of escape, ti, is therefore variable

from atom to atom and from cycle to cycle since the tunneling is a probabilistic event.

2. Acceleration: The now free electron is accelerated away from the ionized atom. As the electric

field reverses, at half-cycle, the electron will now be accelerated towards the parent ion. Upon

arrival at the atom, the electron possesses kinetic energy Ek.

3. Recombination: If the electron collides with the parent ion, at time tr, it recombines emitting a

photon. This photon possesses an energy h̄ω = Ip + Ek.

This process is repeated at each cycle. However, since the first step only relies on the absolute value

of the electric field being enough to allow tunneling, the same steps can be initiated as the electric field

becomes negative and the electron is accelerated in the –x direction. Since this system is symmetric

the likelihood of this case is the same as of the acceleration in +x. Therefore, in a gas, we will observe

the emission of a short-pulse, in some cases down to the attosecond, at each half-cycle of the laser,

forming a train of short-pulses with a period of T/2 (Fig.4.3). By applying the Fourier transform to this

train we obtain a spectrum in the form of a series of delta functions (frequency comb) spaced as

ωn = ω0 + 2nω0, n ∈ N (4.4)

(carrier offset frequency of ω0 and a comb tooth spacing equal to 2ω0). As such in the gas the symmetry

only allows the generation of odd harmonics. This Fourier approach might look synthetic, physically

speaking all frequencies can be generated in this process. However, due to the constriction that the

new photons are generated at each peak of the fundamental in the same direction/polarization of the

fundamental, only waves that are odd harmonics of the fundamental can add constructively. Let us
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Figure 4.2: Three-step recolisional model. (a) A gas atom is modeled as a single electron in the ground state of
a potential well with ionization energy Ip. (b) An applied optical field E(t) from an exciting laser alters
the potential well and causes the electron to tunnel into free space at time ti. (c) The free electron is
accelerated in the +x direction by the negative optical field but reverses direction when the optical field
becomes positive, returning back to the ionized atom with increased kinetic energy Ek at time tr. (d)
The electron recombines with the ion and radiates photons of energy Ip + Ek that takes the form of a
chirped pulse of radiation with sub-femtosecond structure. Adapted from [14].

Figure 4.3: Comparison between (a) emission of visible light by SHG and (b) emission of extreme UV by HHG. In
(b) note the formation of train of sub-femtosecond pulses, one for each half-cycle of the exciting IR field,
together with the spectrum consisting of a frequency comb with a tooth spacing 2ω0. Taken from [14].
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imagine an even harmonic that is generated at time t0 = 0 and therefore has a maximum/minimum at

that time. Since it is an even harmonic it has a period of Teven = T/2n and so after t1 = T/2 (a multiple of

Teven) the harmonic is in the same state as in t0. But at t1 the fundamental is in the opposite direction,

generating the same harmonic but out of phase, thus adding destructively with the harmonic generated

at t0. In the case of an odd harmonic of period Todd = T/(2n + 1), generated at t0, after a time t1 the

harmonic will be pointing in the same direction of the fundamental field (as T/2 = (n + 1/2)Todd) and

adding constructively.

Also because the energy of each photon, generated at tr, depends on the energy Ek of the electron

and both Ek and tr depend on at which time ti the electron originally tunneled, the final pulse will have a

different instantaneous frequency at each time, meaning that the generated pulses are chirped [14].

Equation 4.4 describes the spectrum as an infinite number of delta functions, however what is observed

experimentally is the existence of a plateu followed by a cut-off ( Fig. 4.4). This cut-off is given by [39]

h̄ωmax = Ip + 3.17Up,

Up =
e2E2

0
4mω2

0
=

e2E2
0λ

2
0

16π2mc2 ,
(4.5)

where e and m are, respectively, the charge and the mass of the electron, and Up is the ponderomotive

Figure 4.4: Relative intensity of the harmonics generated in Xe gas. Taken from [13].

potential, which corresponds to the mean kinetic energy acquired by the electron. From this equation,

we see that the cut-off increases with the square of both the electric field and the wavelength. This

model relies on three basic assumptions about the electrons that participate in HHG: (i) they return

to the parent ion, (ii) they tunnel with zero velocity, and (iii) upon the return they have the appropriate

kinetic energy to produce a harmonic. Lewenstein et al [41] performed a full quantum-mechanical

analysis without assuming the initial position or velocity of the electron after tunneling. They concluded
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that the dominating contribution for HHG is precisely the electrons that fill these criteria. Additionally, by

numerical simulation, they arrived at a correction of equation 4.5,

h̄ωmax = 1.32Ip + 3.17Up, (4.6)

However, this equation is obtained in a regime where Up � Ip and therefore this correction is, for most

applications, negligible. As such the semi-classical model, even though quite simplistic, is capable of

depicting the complicated quantum phenomena of HHG in gases, with linearly polarized electric fields,

with remarkable accuracy.

4.1.3 High-Harmonic Generation in solids

In the very first observation of HHG in solids by Ghimire et al [17] they obtained up to the 25th harmonic

in ZnO crystal, with a spectrum consisting in a plateau of harmonics followed by a cut-off. This was

proof that they were observing high-harmonics and not perturbative harmonics; however, as they were

studying the dependence of the cut-off on the magnitude of the electric field, E0, they concluded that

the cut-off grew linearly with E0 instead of quadratically as observed in gases (Eq.4.5). They found that

the HHG process was much less sensitive to polarization than the atomic case, to such an extent that

the process only effectively turned off when the polarization was circular. Additionally, depending on

the orientation of the crystal they were capable of generating either odd-harmonics or a combination of

odd and even-harmonics as a consequence of breaking the symmetry in the system, something never

observed in gases. Therefore their experiments suggested that HHG in solid media does not result from

the same processes as in gases.

One of the main differences in these two regimes is the density: while in a gas the atoms are separated

enough for the system to be reduced to a single potential well, in solids the atoms are far too close

to each other for such an approximation. In solid-state materials the high density generally implies an

overlap of neighbouring atomic orbitals, resulting in the formation of energy bands, in particular, the

valence and conduction bands. The most accepted theory is that the generation of high-harmonics in

solid-state results from a similar process to the three-step recollisional model [42–44] (see Fig. 4.5):

1. Tunneling: The electric field induces a polarization in the material allowing an electron from the

highest valence band to tunnel into the lowest conduction band forming an electron-hole pair. Note

that in this case the hole can not be taken as motionless as we did with the ion in gas-based HHG.

2. Intraband-current: The electron (hole) is then accelerated in the conduction (valence) band in

the opposite direction of its pair, leading to the formation of intraband currents. For the larger

amplitudes near the center of the pulse, the electrons collide with the boundary of the Brillouin zone

and Bragg scatter to the next zone, where their momentum is in the opposite direction leading to
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periodic motions. This is known as Bloch Oscillations (BO)1 [45]. As a consequence, the intraband

currents oscillate much more than the electric field, which leads to a strong radiation [44]. That

radiation can then add constructively and form the harmonics as described previously, this is known

as intraband mechanism [46], which has no analogous in atomic HHG.

3. Recombination: If the electron reencounters the hole, it can recombine, emitting a photon with

energy depending on the wave vector at the time of recombination. This is known as the inter-

band mechanism, which is analogous to HHG in gases. However, one cannot separate the two

mechanisms as the intraband current strongly affects the polarization at the time of recombination.

Additionally, unlike in gas HHG, where the electron recombines with the parent ion, in solid-state

due to BO the electron can recombine with nearest holes (ions).

Figure 4.5: a- The driven electron could scatter from the periodic Coulomb potential termed as Bloch Oscillations,
recombine with the associated hole (ion) and recollide with the first- and second-nearest holes (ions);
b- The momentum-space version of a, showing intraband Bloch oscillations in the conduction band and
interband coupling between the valence and conduction band, both emitting high-frequency radiation in
the forward direction; c- Schematic diagram of the three-step recollision model comprising tunnel ion-
ization, free acceleration and recombination; d- The momentum-space version of c, where the electron
tunnels from the bound state to the continuum state, accelerates in the parabolic continuum band and
then recombines to the bound state (parent ion) emitting high-frequency radiation. Taken from [17].

1In all correctness BO arise in the presence of a constant electric field, however, we can define an instantaneous Bloch
frequency for the instantaneous electric field [44].
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The question of what mechanism dominates HHG in solids remains an open discussion. According to

Vampa et al [43] the dominant mechanism in the plateau for most of their simulations is the interband

current, while intraband interferes more in the perturbative part of the spectrum. However, recently Liu

et al [46] suggested that for fields high enough two plateaus will be formed, a first plateau formed by the

recollision and a second plateau at higher frequencies induced by BO electrons.

Regardless, although this model has some similarities to HHG in gases the consequences of this dou-

ble mechanism bear some striking differences. As mentioned the cut-off of the harmonics grows linearly

with the applied field instead of quadratically. The response to wavelength also differs as it affects the

interband and intraband harmonics differently and in a particularly complex way [43]. Solids have also

been demonstrated to be quite resistant to variation to polarization demonstrating strong signals and

ellipticity levels that would extinguish completely HHG in gases. This is because in solids the electron

can recombine in one of the neighbours of the parent ion, while in the gases the electron must recollide

with the parent ion requiring an electric field as linearly polarized as possible. Finally, if the material

breaks the inversion symmetry it is possible to observe even-harmonics.

Because the absorption of solid materials for high frequencies is much higher than in gases, the maxi-

mum harmonics recorded in gases (> 5000) in much larger than the corresponding one in solids (∼ 25).

However, the gas-based geometries involve expensive and complex setups including amplified fem-

tosecond lasers, vacuum pumps, means to confine the gas, and delicate optics for beam manipula-

tions [42], making them extremely hard to assemble and replicate when compared to the solid-based

ones. This makes solid-state HHG a simple, compact, and affordable alternative for the generation of

attosecond pulses.

4.2 Experimental Work

Before jumping into the experimental results there are some disclaimers on the following data. The

purpose of this thesis is just a proof of concept of the capabilities and potential of the new laser at L2I.

Although we might use the known structure of the materials to justify some of our observations, this is

not a study of that structure. So much that the crystals used for HHG are normally custom made to

guarantee phase matching and possess a thickness of the order of a few microns2, while in our case

we use standard transmission windows, none thinner than 1 mm, and sometimes not even of a pure

substance but instead with some doping.

Finally, our samples either were isotropic (fused silica), had a cubic structure of class m3m (CaF2, LiF,

YAG) or trigonal of class 3m (Sapphire). All of these are centrosymmetric, meaning that it is much less

2In solids many times, due to the strong absorption, the observed harmonics are formed in the last nanometers of the crystal
and it is preferable to have thin crystals to avoid self-action effects.
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probable to observe even harmonics [20]. In principle all m3m samples should have been cut at the

< 100 > plane.

4.2.1 Setup

The two setups for harmonic generation (Fig. 4.6) are similar to those presented for SCG at 3 μm,

section 3.2.1. Except that instead of using an integrating sphere we use a UV optical fiber, mounted on

a translator, to collect each harmonic individually and send them to a spectrometer (FLEX-STD-UV-Vis-

NIR, SARSPEC).

Figure 4.6: Experimental setup for the acquisition of harmonics. Top: setup with 10% of the output power using a
wedge. Bottom: setup with the full power.
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4.2.2 Methods and Results

We acquired harmonics for multiple materials. In the case of the low-power setup, the samples were

placed at the focus, while in the high-power setup they were placed slightly after the focus with the aid

of the translation stage, as the energy was high enough to damage the samples.

Regardless, the procedure was similar for each sample. By moving the translator, we search for any

individual harmonics with the spectrometer. When we locate a harmonic we use the rotation mount

to rotate the samples around their axis3 and the spectrum is taken in intervals, in most cases, of 10◦

until covering the entire 360◦ range. The process is then repeated for each available harmonic and the

sample is switched.

For each harmonic the spectrum is fitted by an ODR to a Gaussian function:

C(λ) =
C0

σ

√
2π

exp

(
–

1
2

(λ – μ)2

σ2

)
, (4.7)

where C(λ) is the number of counts as a function of the wavelength, C0 the normalization constant, μ

the expected value, and σ the variance. As C0 is proportional to the energy of the harmonic, its variation

with the orientation is studied in the form of polar plots where the radius is the value of C0 normalized

to each harmonic. To verify the accuracy of this fit, we also present the similar polar plot for area be-

neath the harmonic defined as
∫
λ2
λ1

C(λ) dλ, where λ1 and λ2 are, respectively, the lowest and the highest

wavelength in which C(λ1,2) = max{C(λ)}/e2, λ2 > λ1. In some cases we had to remove some outliers

and points where the uncertainty was too high to accept the measured values.

For each sample, we present two overviews of the obtained harmonics. In both cases, we use the spec-

trum with the highest number of counts and the wavelengths are multiplied by the expected harmonic

order and compared with the fundamental4. While in one case the harmonics are presented normalized

to verify the spectrum shape, in the other the spectrum is divided by the spectrometer’s acquisition time

for that specific spectrum. The latter allows calculating the rate of counts to each harmonic, which can

later be associated with the power of said harmonic.

A final note before going into the experiments themselves is a question of notation, in many graphics,

we use the following notation to distinguish between the two possible setups (Fig. 4.6):

W - Stands for the low-power setup using the Wedge.

M - Stands for the high-power setup using the Mirror.

3The beam was not focused in the center of the sample to avoid the overexposure of a single spot. The orientation of the
crystals should be the same at each point however the experiment becomes susceptible to any in-homogeneity in the material.

4Due to some coupling problems at the entrance of our spectrometer this spectrum is quite noisy and may not match perfectly
the real fundamental spectrum in terms of intensity. However, it should be enough to verify the bandwidth of the input spectrum.
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4.2.2.1 Calcium fluoride samples

Calcium fluoride demonstrates a low absorption and a high damage threshold, with a transmission

ranging from 200 nm to 8000 nm making it an ideal material for the propagation of low-energy, high-

frequency waves such as the harmonics. In our case, we use two doped samples, one of UV grade

(1 mm thick) and another IR grade (3 mm).

(a) W-3rd harmonic. (b) W-5th harmonic. (c) M-3rd harmonic.

(d) M-5th harmonic. (e) M-7th harmonic. (f) W-9th harmonic.

Figure 4.7: Polar plots for the 1 mm CaF2 sample placed at focus. The radius corresponds to the normalized area
beneath the curve. In red calculated by a Gaussian fit and in blue by a numerical integration within 1/e2

of the maximum number of counts. W stands for the low-power using a wedge setup while M stands for
the high-power setup using a mirror.

In the case of the 1 mm sample we started by acquiring with the low-power setup. Figs. 4.7a and 4.7b

show the acquired data. The polar plot does not present any kind of obvious dependence. The small

variation observed can be associated with noise. After that5, we performed the measurements of the

harmonics in the high power-setup, reaching up to the 9th harmonic. The results are shown in Figs.

4.7c-4.7f. For these experiments the sample was placed 24.2 cm away from the 200 mm focusing lens.

5Bear in mind that the experiments with the low-power and high-power setup were performed at different times running all the
different samples. Additionally, the samples do not possess any kind of marking that would allow to place the sample in the exact
same orientation so the 0º of the low and high-power power setups do not necessarily match.
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(g) W-9th harmonic closer to focus. (h) M-unknown near the 3rd harmonic. (i) M-unknown near the 5th harmonic.

Figure 4.7: Polar plots for the 1 mm CaF2 sample placed at focus. The radius corresponds to the normalized area
beneath the curve. In red calculated by a Gaussian fit and in blue by a numerical integration within 1/e2

of the maximum number of counts. W stands for the low-power using a wedge setup while M stands for
the high-power setup using a mirror. (cont.)

Figure 4.8: Smoothed spectra of all harmonics obtained with a CaF2 sample of 1 mm. Each spectrum corresponds
to the angle with the highest count rate and are centered around the fundamental. On the left all spectra
were normalized, while on the right we present the count rate of each spectrum.
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Once again we observed a lack of dependence on the angle. However, with the high power we observed

that the 3rd and 5th harmonics were accompanied by an unknown peak (Figs. 4.7h and 4.7i), although

with the same lack of angular dependence. Finally we tried to move the sample 1 mm closer to the focus

having obtained the 9th harmonic before damaging the sample, Fig. 4.7g. A selection of spectra for

each harmonic is presented in Fig. 4.8.

For the 3 mm sample we could only obtain harmonics in the low-power setup as the high-power led to

SCG, Fig. 3.9a. We started by measuring the peak in the expected position of the 3rd harmonic, Fig.

4.9a, and noticed a small peak at lower wavelength that seemed to have an opposite behaviour with

the variation of the angle. The fiber coupling was then moved to a position in which we could measure

both peaks simultaneously. Using this data, we studied the angular dependence of both, Fig. 4.9b, with

a double Gaussian fit with fixed values for μ. We were also able to obtain the 5th harmonic, Fig. 4.9c,

which presented a four-fold dependence on the angle and with an isotropic background, similar to the

one shown by the lower wavelength peak at 920 nm. A selection of spectra corresponding to the highest

count rate is depicted in Fig. 4.10.

The observed four-fold dependence with isotropic contribution, in the 3 mm sample, is similar to the one

expected for THG in a crystal with a m3m cubic structure and a p-polarized electric field, Ep, propagating

perpendicular to the < 100 > plane [47]:

ITHG
p (3ω0) ∝ [c0 + c1 cos (4φ)]2|Ep(ω0)|6, (4.8)

where φ is the angle between the field’s polarization and one of the crystals’ unit vectors, in the < 100 >

plane. This expression has a isotropic contribution, c0, added with a anisotropic term, c1 cos (4φ), as

consequence of the tensorial nature of χ(3). The lack of angular dependence of the 1 mm when compare

to the 3 mm could be associated to the different type of doping in the samples. It is quite possible that the

UV doping used in the 1 mm sample created a more isotropic medium by breaking the CaF2 structure.

This is more visible in Fig. 4.7c, which has a higher intensity and therefore less sensitive to noise, where

the intensity is constant with the angle, with the exception the 0º due to a damage point in the sample.

The existence of the unexpected peaks might be related to some SCG that changed the structure of

the fundamental. This is particular apparent in Fig. 4.9b where the two peaks are obviously coupled,

meaning that when the harmonic is more phase-matched the fundamental loses energy resulting in a

lower energy for the additional peak.

One must also notice that the overall count rate of the harmonics in the low-power setup is around one

order of magnitude smaller in the 3 mm sample, Fig. 4.10, when compared with the 1 mm sample, Fig.

4.8, probably as a result of the absorption by the material.
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(a) W-initially measured ”3rd” harmonic. (b) W-Variation of the two peaks. (c) W-5th harmonic.

(d) Result of a double Gaussian fit in the region of the third harmonic, correspondent to the
point at 0º in Fig.4.9b. Acquisition time of 100 ms.

Figure 4.9: Polar plots for the 3 mm CaF2 sample. The radius corresponds to the normalized area beneath the
curve. In red, green and magenta calculated by a Gaussian fit and in blue by a numerical integration
within 1/e2 of the maximum number of counts. W stands for the low-power using a wedge setup while
M stands for the high-power setup using a mirror.

Figure 4.10: Smoothed spectra of all harmonics obtained with a CaF2 sample of 3 mm. Each spectrum corresponds
to the angle with the highest count rate and are centered around the fundamental. On the left all
spectra were normalized, while on the right we present the count rate of each spectrum.
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4.2.2.2 Fused Silica sample

Fused Silica is a homogeneous material with a very broad transmission range. In our case the sample

is a UV grade fused silica, which has high transmission in the range of the harmonics but unfortunately

exhibits a drop around 2.7 μm. The main interest of this sample is that it has no crystal structure, as

such, the theory exposed in section 4.1.3 is no longer valid. Regardless, You et al [48] demonstrated

previously the possibility of HHG in fused silica and crystal quartz.

(a) W-3rd harmonic. (b) W-5th harmonic.

Figure 4.11: Polar plots for the 5 mm fused silica sample. The radius corresponds to the normalized area beneath
the curve. In red calculated by a Gaussian fit and in blue by a numerical integration within 1/e2 of the
maximum number of counts. W stands for the low-power using a wedge setup while M stands for the
high-power setup using a mirror.

Figure 4.12: Smoothed spectra of all harmonics obtained with a fused silica sample of 5 mm. Each spectrum
corresponds to the angle with the highest count rate and are centered around the fundamental. On
the left all spectra were normalized, while on the right we present the count rate of each spectrum.

With this sample we observed 3rd and 5th harmonic in the low-power setup, while the high-power one

resulted in SCG, Fig. 3.9b. The observed harmonics, Fig. 4.11, do not present any clear angular

dependence. In particular, the 3rd harmonic, since it is less susceptible to noise, shows a very isotropic

curve, Fig. 4.11a. This is within expectation since fused silica is amorphous. The corresponding spectra
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are presented in Fig. 4.12.

4.2.2.3 Lithium fluoride sample

Lithium fluoride is a material with a high transmission from 150 nm to 6000 nm, one might add that the

transmission of Vacuum UV is excellent, possibly the highest in all of our materials. Additionally, it is also

exhibits the largest bandgap, making it the least likely to suffer optical damage, although it is the most

physically fragile of them all.

The 3 mm thick LiF sample only generated harmonics in the high-power setup. In this case we obtained

harmonics for three positions of the sample. First we placed it 24.4 cm away from the focal lens having

obtained a 3rd and 5th harmonic, Fig. 4.13b and 4.13d. After this, we moved the sample away from the

lens at 25.1 cm where we were only able to measure the 3rd harmonic due to the poor signal-to-noise

ratio of the 5th harmonic, Fig. 4.13a. Finally, we placed the sample at 24.3 cm from the lens measuring

3rd and 5th harmonics, Fig. 4.13c and 4.13e.

(a) M-3rd harmonic 25.1 cm from lens. (b) M-3rd harmonic 24.4 cm from lens. (c) M-3rd harmonic 24.3 cm from lens.

(d) M-5th harmonic 24.4 cm from lens. (e) M-5th harmonic 24.3 cm from lens.

Figure 4.13: Polar plots for the 3 mm LiF sample. The radius corresponds to the normalized area beneath the
curve. In red calculated by a Gaussian fit and in blue by a numerical integration within 1/e2 of the
maximum number of counts.

As we can see in Fig. 4.13, when we place the sample away from the focus we only observe an isotropic
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Figure 4.14: Smoothed spectra of all harmonics obtained with a LiF sample of 3 mm. Each spectrum corresponds
to the angle with the highest count rate and are centered around the fundamental. On the left all
spectra were normalized, while on the right we present the count rate of each spectrum.

curve, but as we get closer we recover the same four-fold curve observed in the 3 mm thick CaF2 sample

and as observed in [47]. However, the 5th harmonic does not present any kind of isotropic response,

instead it seems to have a simple four-fold shape, although in Fig. 4.13e at 135◦ we have a zero that

could be associated with a damage point in the sample.

4.2.2.4 Sapphire samples

Sapphire is a material with a high physical resistance, making it an ideal substrate for windows stronger

and thinner than with standard glass. It also has a high transmission from the UV to the MIR making it

particularly interesting when generating harmonics with MIR light. In this case, we used two samples,

with thicknesses of 1 mm and 2 mm. Both samples were labeled as C-cut sapphire, although one of

them was actually mislabeled as we will see ahead.

With the 1 mm sample we first obtained the 3rd and 5th harmonics in the low-power setup, Fig. 4.15a

and 4.15b. For the high-power setup we placed the sample 24.4 cm after the lens, resulting in the

observation of 3rd and 5th harmonics, Fig. 4.15c and 4.15d. In all cases, we observed a four-fold

pattern, even though in the case of the 5th we observe a sharp peak, likely due to the formation of a

point of damage. However, this does not correspond to the typical behaviour of THG by incidence on

the sapphire’s C-plane, which should be nearly insensitive to the angle [49, 50]. It is instead close to

what should be expected for incidence in either A, M, or R-planes, thus it is likely that this sample was

mislabeled as a C-cut. A collection of spectra is presented in Fig. 4.16.

As for the 2 mm sample we obtained 3rd and 5th harmonic for the low-power setup, Fig. 4.17a and

4.17b. In this case the harmonics are nearly insensitive to the angle where the variation in Fig. 4.17b

can be explained by noise. This lack of dependence agrees to the expected result with incidence on the
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(a) W-3rd harmonic. (b) W-5th harmonic.

(c) M-3rd harmonic. (d) M-5th harmonic.

Figure 4.15: Polar plots for the 1 mm sapphire sample. The radius corresponds to the normalized area beneath
the curve. In red calculated by a Gaussian fit and in blue by a numerical integration within 1/e2 of the
maximum number of counts. W stands for the low-power using a wedge setup while M stands for the
high-power setup using a mirror.

Figure 4.16: Smoothed spectra of all harmonics obtained with a sapphire sample of 1 mm. Each spectrum corre-
sponds to the angle with the highest count rate and are centered around the fundamental. On the left
all spectra were normalized, while on the right we present the count rate of each spectrum.
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C-plane [49,50]. The spectra are presented in Fig. 4.18.

(a) W-3rd harmonic. (b) W-5th harmonic.

Figure 4.17: Polar plots for the 2 mm sapphire sample. The radius corresponds to the normalized area beneath
the curve. In red calculated by a Gaussian fit and in blue by a numerical integration within 1/e2 of the
maximum number of counts. All this data was taken in the low-power setup with the wedge.

Figure 4.18: Smoothed spectra of all harmonics obtained with a sapphire sample of 2 mm. Each spectrum corre-
sponds to the angle with the highest count rate and are centered around the fundamental. On the left
all spectra were normalized, while on the right we present the count rate of each spectrum.

4.2.2.5 Fourier analysis

In Figs. 4.14, 4.16 and 4.18 (LiF and the two sapphires) we noticed than the 3rd harmonic spectra

present an interference pattern. This pattern was consistent with the one observed by Garejev et al [51].

They observed that this interference was a result of the formation of a third harmonic with two peaks

separated in time, which they called free and driven components. These two components should be

formed at the sample’s surface, but while the free component travels with the typical group velocity

for its harmonic frequency, vg(3ω0), the driven component travels at the same group velocity as the

fundamental pulse, vg(ω0). To study this phenomenon we assumed that the spectral intensity could be
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associated with the Fourier Transform (FT) of the temporal wave packet, FT(ω), such that

I(ω) = |FT(ω)|2 (4.9)

and approximate FT by FT(ω) =
√

I(ω) ∝
√

C(ω), where C(ω) corresponds to the number of counts at

each frequency. For the sapphires C(ω) was calculated from the highest count spectrum of 3rd harmonic

presented in Figs. 4.16 and 4.18. In the case of LiF we opted for the curve obtained when the sample

was placed away from focus (corresponding to the ”M 3rd away from focus” curve in Fig. 4.14) since

it demonstrated the strongest interference pattern. Additionally, while the LiF and the 2 mm sapphire

samples show the exact same pattern at each angle, the 1 mm thick sapphire sample shows a smooth

change of this pattern with the angle.

We then calculated the Inverse Fourier Transform (IFT) to recover the variation of the electric field with

time. The absolute value of IFT is presented in Fig. 4.19, where we observe indeed the existence of two

peaks separated by a time interval Δt. The central pulse corresponds to the driven component, which

moves faster than the free component in all our samples. The smaller peak in the positive time is the

free component while the peak in the negative time arises from the parity of the IFT.

The conditions for the formation of the two components of THG are a large phase mismatch, Δk =

k(3ω0)–3k(ω0) ∝ Δn0 = n0(3ω0)–n0(ω), and a large group velocity mismatch, ν13 = 1/vg(ω0)–1/vg(3ω0),

[51]. Assuming that all the temporal separation is caused only in the nonlinear environment, inside the

sample, we can calculate Δt as:

Δt = |ν13|L, (4.10)

where L is the length of the sample. The values of vg(ω0) and vg(3ω0) can be calculated as [2]:

vg(ω) =
c

ng(ω)
, (4.11)

where ng is the group index. The values for all samples are presented in Table 4.1.

Table 4.1: Calculated values for the Fourier analysis of the THG spectra.

Material
ng vg (108 m/s)

Δn ν13 (10–11 s/m) L (mm) Δt (fs)
1 μm 3 μm 1 μm 3 μm

CaF2

6

1.4355 1.4390 2.088 2.083 0.0110 1.167
1 12

3 35

Fused silica7 1.4630 1.4904 2.049 2.011 0.0312 9.140 5 457

LiF8 1.3955 1.4103 2.148 2.126 0.0206 4.937 3 148

Sapphire
9

1.7749 1.8047 1.689 1.661 0.0435 9.940
1 99

2 199
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(a) LiF sample (b) 1 mm sapphire sample

(c) 2 mm sapphire sample

Figure 4.19: Absolute value of the IFT for the THG spectra, in the insets the supposed FT.

As we can see, the experimental values of Δt are close to the theoretical prediction. For the 1 mm

sapphire the difference between the two is larger, but this could be associated with the different cut

and the consequent difference in the values of n and ng, which could also explain the variation of the

interference pattern with the angle. We also notice that the values ofΔn and ν13 for the CaF2 are smaller

than in other samples, but most importantly they are smaller than those in the experiment of Garejev

et al [51], which could explain why we did not observe the formation of the two components in these

samples. The most surprising result however, is that that for fused silica the values of Δn and ν13 are

higher than for LiF, meaning that we should observe interference in this sample. A possible explanation

is that for this sample the value of Δt was so large that the peaks of the interference pattern were too

6https://refractiveindex.info/?shelf=main&book=CaF2&page=Malitson
7https://refractiveindex.info/?shelf=glass&book=fused_silica&page=Malitson
8https://refractiveindex.info/?shelf=main&book=LiF&page=Li
9https://refractiveindex.info/?shelf=3d&book=crystals&page=sapphire
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close for our spectrometer to discern between consecutive peaks.

4.2.2.6 Final remarks

For us to have an idea of how efficient the harmonic generation is, we used the high-power setup and

placed a 4 mm YAG sample in the rotation mount to generate a supercontinuum. Them the spectrum was

measured by moving the optical fiber to different positions, recording the spectra in order to reconstruct

the full spectrum with all the data. In order to use the same acquisition parameters for all these spectra

and to avoid saturating the spectrometer, it was necessary to place a filter (N20A, THORLABS) after

the beam dump. Because the power after the filter was too low to measure with the available power-

meters it was necessary to use the manufacturer’s transmission data to reconstruct the spectra to what

they should look like in the absence of the filter, in a similar way to section 3.2.2.2. The transmission

curve and respective correction are represented in Fig. 4.20, however, some points at the edges had

to be removed because the transmission was so low that the noise of the measurement was enough

to generate extremely high counts. After this, at each wavelength, the point with the highest number of

counts was taken to form the full spectrum, Fig. 4.21. This spectrum was then numerically integrated

giving a total of around 640966 Counts · nm/ms while the measured power was 3.17 ± 1 mW giving a

power calibration factor, C, of

C = 202.2
Counts · nm

ms · μW
. (4.12)

With the value of C we calculate the power for each harmonic, P, as well as the rate of harmonic photons,

RHP, such that:

PH =

∫
λ2
λ1

C(λ), dλ

tacqC
RHP =

PH
hc/λH

, (4.13)

where tacq is the spectrometer’s acquisition time and λH = (3000/m) nm the m-nth harmonic’s central

wavelength. These values are presented in Table 4.2 together with the power conversion efficiency of

each harmonic, η = PH/PW,M, where PW = 0.48 W is the input power in the system with the wedge, and

PM = 4.8 W with the mirror.

The power conversion efficiencies are within expectation for perturbative third and fifth harmonic gen-

eration [51]. The value RHP is higher in the setup with the mirror since it sends more photons to the

sample. However, the behaviour of η is not so simple, while a mirror increases the power we had to

make a softer focus and place the samples after the focus to avoid damage. Which reduces the light

intensity and therefore explains the reduction of η in the case of the 1 mm thick sapphire sample, when

we changed to the setup with the mirror. This dependence in intensity is apparent when we compare the

values of RHP and η for harmonics taken at a different distance of the focus, naturally with the closest

ones (higher intensity) having higher values.

Overall the obtained harmonics seem to be perturbative when we take into account the angular depen-
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dence with the polarization. However, to prove this hypothesis we would need to measure the variation

of the harmonic intensity with the intensity of the input field. For perturbative harmonics, the intensity

of the m-nth harmonic grows with a power-law I(mω0) ∝ Im(ω0) unlike the harmonics resulting from

HHG [17]. This could be achieved, for example, with a half-wave plate combined with a polarizer to

change the power sent to the sample, however, we currently do not possess those components for the

3 μm range. As such we cannot exclude the possibility that the observed harmonics could have been

generated through HHG, in particular for the harmonics generated in the 1 mm thick CaF2 sample, which

not only generated up to the 9th harmonic but also showed no response to variation of the orientation of

the sample nor the formation of two THG components.

Figure 4.20: On the left is the interpolation of the transmission data of the filter in the region of interest for the
calibration. On the right four SCG spectra obtained in different positions of the fiber, after the correction
of transmission and division by the acquisition time.

Figure 4.21: Final supercontinuum spectrum for integration and calibration of the harmonic’s power.
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Table 4.2: Approximated power, photon rate and efficiency of each harmonic.

Sample Thickness Crystal class Harmonic PH (μW) RHP (s–1) η

UV grade CaF2 1 mm m3m

W 3rd 5.67× 101 2.85× 1014 1.18× 10–4

W 5th 2.34× 10–1 7.06× 1011 4.87× 10–7

M 3rd 1.92× 103 9.66× 1015 4.00× 10–4

M 5th 4.27× 101 1.29× 1014 8.89× 10–6

M 7th 4.63× 10–2 9.99× 1010 9.65× 10–9

M 9th 8.98× 10–3 1.51× 1010 1.87× 10–9

M 9th closer to focus 9.48× 10–3 1.59× 1010 1.97× 10–9

M unknown near the 3rd 1.19× 103 6.00× 1015 2.48× 10–4

M unknown near the 5th 1.79× 101 5.42× 1013 3.74× 10–6

IR grade CaF2 3 mm m3m
W 3rd 4.15× 101 2.09× 1014 8.65× 10–5

W 5th 8.84× 10–2 2.67× 1011 1.84× 10–7

UV grade fused silica 5 mm Amorphous
W 3rd 7.26× 100 3.66× 1013 1.51× 10–5

W 5th 6.78× 10–3 2.05× 1010 1.41× 10–8

LiF 3 mm m3m

M 3rd 7.79× 101 3.92× 1014 1.62× 10–5

M 5th 5.30× 10–1 1.60× 1012 1.10× 10–7

M 3rd closer to focus 2.52× 102 1.27× 1015 5.25× 10–5

M 3rd away from focus 3.25× 100 1.63× 1013 6.76× 10–7

M 5th closer to focus 1.37× 100 4.14× 1012 2.85× 10–7

1 mm 3m

W 3rd 4.69× 101 2.36× 1014 9.76× 10–5

Sapphire unkown W 5th 3.09× 10–1 9.33× 1011 6.43× 10–7

cut (A, M, R) M 3rd 9.80× 101 4.94× 1014 2.04× 10–5

M 5th 1.32× 100 3.99× 1012 2.75× 10–7

C-cut sapphire 2 mm 3m
W 3rd 2.80× 101 1.41× 1014 5.83× 10–5

W 5th 1.53× 10–1 4.61× 1011 3.18× 10–7
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4.3 Simulation in literature

In this section, we present some of the procedures found in the literature for the simulation of harmonic

generation. We will abstain, however, from performing said simulations. The simulation of harmonics

is rather complex, in particular in solids, so much that they are normally performed by large teams of

experts in the field, sometimes taking years to obtain results and only studying a few aspects of harmonic

generation. This is out of the scope of this master thesis, which is mainly experimental and centered

around the capabilities of the new laser system at L2I and not harmonics explicitly.

The simulation of perturbative harmonics is many times centered around SHG and THG. The most

direct method for the simulation of nonlinear effects involves solving the forward Maxwell’s equation for

the complete electric and magnetic fields [52, 53]. While more complete, this kind of approach tends to

have a high computational cost and so many times it is preferred to use an approximation such as the

slowly varying wave or slowly varying envelope to solve the nonlinear Schrödinger equation or one of

its countless variations [54,55]. A good review of many methods for simulation of nonlinear effects, in a

more general case, is presented by Couairon et al [56].

For bulk materials, the most complete simulations normally include both perturbative harmonics and

HHG including the band systems and sometimes the dependence on the orientation of the input field’s

polarization. Yu et al present a remarkably complete review of the primary numerical methods for this

kind of simulation in solids [57], including methods based on the time-dependent Schrödinger equation,

semiconductor Bloch equations, and dependent density-functional theory. All of these methods are of

extreme complexity and require a considerable knowledge on the structure of the medium.
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In the work reported in this thesis we explored some of the capabilities of the new laser system installed

at L2I in the IST Alameda campus. In this final chapter we make a quick review of the main topics and

results of this thesis, ending with a comment on the perspectives and planned future works.

5.1 Review

5.1.1 Chapter 3

In this chapter, we presented spectral broadening in the normal (1.03 μm) and anomalous (3 μm) dis-

persion regime, the last leading to the formation of a supercontinuum.

For the normal regime, we experimentally observe the importance of the intensity and propagation length

for the broadening. The experimental data was then compared to a simplified theoretical model, based

on solving a GNLSE in a nonlinear waveguide but in the absence of self-focus or filamentation. The

mismatch between the experiment and this simple numerical model points to the formation of a filament

in the samples, due to self-focusing, with the formation of free electrons.

In the anomalous regime, we have observed the wings of the supercontinuum that includes the visible

range, which is in agreement with other experimental works [29–31]. The spectral broadening achieved

is many times larger than what was achieved using the 1.03 μm pump even though the pump power is

∼ 17 times higher than the 3 μm laser, going from a 6 nm FWHM to the formation of wings more than

2000 nm away from the fundamental. This is a clear proof of the advantages of the new system at L2I

that now allows us to observe these new and exotic physical phenomena.

5.1.2 Chapter 4

In this chapter, we performed harmonic generation from a 3 μm laser field. We present the angular

dependence for a number of solid media and harmonic orders, which in an overall fashion coincide with

the expected results from perturbative harmonic generation. In the particular case of a 1 mm thick UV

grade CaF2 window, we cannot exclude, without reasonable doubt, the possibility of HHG.

Additionally, we performed a Fourier analysis for some of the obtained THG spectra that presented

an interference pattern. This study points to the formation of two THG components: free and driven.

The results are within those predicted by theory [51], including the lack of observation of these two

components in other samples.

After this, we performed a study of the efficiency of the harmonic generation, which is once again within

expectations for perturbative harmonic generation, at least for the 3rd and 5th harmonic.

This chapter was concluded with some of the procedures for the simulation of harmonics generation.
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5.2 Future work

5.2.1 Spectral broadening

An interesting work at 3 μm would be the study of the full supercontinuum spectra instead of only the

wings. We currently possess a MOZZA spectrometer by FASTLITE with a spectral range of 1 – 5 μm

which, together with the spectrometer used in our experiments (FLEX-STD-UV-Vis-NIR, SARSPEC)

would allow us to cover the entire supercontinuum spectrum. During our experiments, we had some

coupling problems with this system, and as such were unable to use it, but once these limitations are

solved we should be able to obtain the desired data.

Another component to study would be the variation of the temporal shape of the pulses in both sets of

experiments: this would allow studying the possibility of pulse-splitting or self-compression. A possible

way to do this would be using a Frequency-Resolved Optical Gating (FROG) system. In fact, in parallel

to this thesis, there was the development of such a system designed for ∼ 3 μm, as L2I was already

equipped with a similar device for the ∼ 1 μm.

5.2.2 Harmonic Generation

The generation of harmonics, in particular HHG, normally involves custom-made thin crystals of the

order of microns. So one of the next steps to obtain HHG would be to acquire such crystals. In that

sense, we would also need means to more accurately control the energy sent to the samples, which

could imply the acquisition of a half-wave plate and a polarizer for the 3 μm range. In particular to study

the dependence on the intensity of the harmonics with the fundamental electric field to conclude, without

reasonable doubt, that they are indeed high-harmonic and not perturbative.

Additionally, while our Fourier approach produced good results it might be preferable to measure directly

the temporal shape of the third-harmonics. This could be accomplished, once again, with a FROG sys-

tem, in this case the ∼ 1 μm.

Finally, all the harmonic spectra were taken while changing the sample’s orientation manually. Even in

the cases where we measured in intervals of 10º (the largest interval used but in some cases, we used

intervals of 4º) that would result in 36 acquisitions, which amounts, for our 25 presented harmonics, to

at least 900 acquisitions. So naturally, it would be preferable to automatize the system to acquire more

data and with higher accuracy. The same idea can also be applied to the position of the sample that is

controlled manually using the translation stage. In that regard, we are in the process of acquiring mo-

torized equipment to automatize the entire process for future experiments, either by us or other groups

within GoLP or other partnerships.
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in glass,” Physical Review Letters, vol. 24, no. 11, pp. 584–587, mar 1970. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRevLett.24.584

[12] J. T. Manassah, R. R. Alfano, and M. Mustafa, “Spectral distribution of an ultrafast supercontinuum

laser source,” Physics Letters A, vol. 107, no. 7, pp. 305–309, feb 1985. [Online]. Available:

https://linkinghub.elsevier.com/retrieve/pii/0375960185906413

[13] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-

harmonic conversion of 1064 nm radiation in rare gases,” Journal of Physics B: Atomic,

Molecular and Optical Physics, vol. 21, no. 3, pp. L31–L35, feb 1988. [Online]. Available:

https://iopscience.iop.org/article/10.1088/0953-4075/21/3/001

[14] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 3rd ed. Wiley Blackwell, 2019.

[15] T. Popmintchev, M. C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis,
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cells: 1D numerical model and investigation of spatio-spectral couplings at high nonlinearity,”

Journal of the Optical Society of America B, vol. 37, no. 4, p. 993, apr 2020. [Online]. Available:

https://www.osapublishing.org/abstract.cfm?URI=josab-37-4-993

[38] O. Uteza, B. Bussière, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis,

“Damage threshold of sapphire in short and long pulse regime,” in International Conference on

Lasers, Applications, and Technologies 2007: Laser-assisted Micro- and Nanotechnologies, V. Y.

Panchenko, O. A. Louchev, and S. Malyshev, Eds., vol. 6732, jun 2007, p. 67321P. [Online].

Available: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.752215

[39] P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Physical Review Letters,

vol. 71, no. 13, pp. 1994–1997, sep 1993. [Online]. Available: https://link.aps.org/doi/10.1103/

PhysRevLett.71.1994

[40] K. C. Kulander, K. J. Schafer, and J. L. Krause, “Dynamics of short-pulse excitation, ionization

and harmonic conversion,” in Super-Intense Laser-Atom Physics, ser. NATO ASI Series, B. Piraux,
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A
Full spectra
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(a) Fused silica sample 47 cm away from the lens. (b) Fused silica sample 45 cm away from the lens.

(c) Fused silica sample 43.5 cm away from the lens. (d) CaF2 sample.

(e) Sapphire sample, FWHM= 3.2 nm. (f) YAG sample.

Figure A.1: Spectral broadening at 1.03 μm. The captions are the percentage of the full power (82 W) sent to the
sample. The insets depict the variation of FWHM with the power.
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Figure A.2: Spectra of all harmonics obtained with a CaF2 sample of 1 mm. Each spectrum corresponds to the
angle with the highest count rate and are centered around the fundamental. On the left all spectra were
normalized, while on the right we present the count rate of each spectrum.

Figure A.3: Spectra of all harmonics obtained with a CaF2 sample of 3 mm. Each spectrum corresponds to the
angle with the highest count rate and are centered around the fundamental. On the left all spectra were
normalized, while on the right we present the count rate of each spectrum.

Figure A.4: Spectra of all harmonics obtained with a fused silica sample of 5 mm. Each spectrum corresponds to
the angle with the highest count rate and are centered around the fundamental. On the left all spectra
were normalized, while on the right we present the count rate of each spectrum.
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Figure A.5: Spectra of all harmonics obtained with a LiF sample of 3 mm. Each spectrum corresponds to the angle
with the highest count rate and are centered around the fundamental. On the left all spectra were
normalized, while on the right we present the count rate of each spectrum.

Figure A.6: Spectra of all harmonics obtained with a sapphire sample of 1 mm. Each spectrum corresponds to the
angle with the highest count rate and are centered around the fundamental. On the left all spectra were
normalized, while on the right we present the count rate of each spectrum.

Figure A.7: Spectra of all harmonics obtained with a sapphire sample of 2 mm. Each spectrum corresponds to the
angle with the highest count rate and are centered around the fundamental. On the left all spectra were
normalized, while on the right we present the count rate of each spectrum.
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B
Simulations and calculations with

pyNLO

Listing B.1: Code for the calculation of GVD.

1 import pynlo

2 import Crystals

3 import pylab

4 import matplotlib.pyplot as plt

5 import numpy as np

6 import scipy.constants as constants

7 speed_of_light=constants.c #Speed of light in vacuum (m/s)

8

9 def calculate_beta2(crystal ,wl_nm): #Calculates the second order dispersion

coefficient in ps^2/km

10 return (--crystal.calculate_D_ps_nm_km(crystal (),wl_nm)*wl_nm**2/(2*np.pi
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*speed_of_light)*1e3)

11 """ ATTENTION: The double negative is just to call to attention that

12 the pynlo lybrary calculates D but in a defenition with the opposite sign

of most books/articles """

13

14 crystal_list=[Crystals.CaF2 ,

15 Crystals.Fused_Silica ,

16 Crystals.Sapphire ,

17 Crystals.YAG]

18

19 Material={

20 Crystals.CaF2:'Calcium Fluoride ',

21 Crystals.Fused_Silica:'Fused_Silica ',

22 Crystals.Sapphire:'Sapphire ',

23 Crystals.YAG:'YAG'

24 }

25

26

27 fig = plt.figure(figsize=(10 ,4))

28 ax = fig.add_subplot (111)

29 ax.set_position ([0 ,0 ,0.5 ,0.8])

30 pylab.xlabel('Wavelength (nm)', fontsize=15)

31 pylab.ylabel(r'$\beta_2\ (ps^2/km)$', fontsize=15)

32

33 for crystal in crystal_list:

34 x=[]

35 y=[]

36 for wl in range (200 ,3500):

37 x.append(wl)

38 y.append(calculate_beta2(crystal ,wl))

39 plt.plot(x,y,label=Material[crystal ])

40 ax.legend(loc='upper right ', shadow=True ,fontsize=10)

41 plt.hlines(y=0,xmin=200,xmax=3500, color='k')

42 plt.text (750 ,600,'Normal \ndispersion ',fontsize=13, horizontalalignment='

center ')

43 plt.text (2500,-750,'Anomalous \ndispersion ',fontsize=13, horizontalalignment='

center ')

44 plt.show()
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Listing B.2: Code for the simulation with pyNLO.

1 import numpy as np

2 import pynlo

3 import Crystals

4

5 def calculate_betas(crystal ,wl_nm):

6 '''Returns an array with the dispersion coefficients of second , third ,

and fourth -order , in units of [ ps^2/km , ps^3/km , ps^4/km ], for a

given crystal

7 (pynlo.media.crystals.CrystalContainer.Crystal class object) and

wavelength in nm.

8 '''

9 return pynlo.media.fibers.calculators.DTabulationToBetas(lambda0=wl_nm ,

DData=np.array(

10 [[l,-1e3*crystal.calculate_D_ps_nm_km(self=crystal (),wavelengths_nm=l)]

for l in range(wl_nm-10,wl_nm+11,1)]

11 ), polyOrder=2, DDataIsFile=False)

12 """ ATTENTION: The current version of the pynlo lybrary calculates the

dispersion parameter (D) in a defenition with the opposite sign ence

the minus sign.

13 crystal.calculate_D_ps_nm_km: Calculates the D based on nefracive index

given by the Sellmeir function in the crystal class object.

14 pynlo.media.fibers.calculators.DTabulationToBetas: Read in a tabulation

of D vs Wavelength. Returns betas in array [beta2 , beta3 ,[U+FFFD],

beta_polyOrder]

15 """

16 #### Simulation

17 FWHM = 1 # pulse duration (ps)

18 pulseWL = 1030 # pulse central wavelength (nm)

19 freq = 100e3 # repetition rate of the pulses (Hz)

20 # does not affect the simulation itself it is just

to calculate internally the average power in

case of need

21 Full_EPP = 82/freq # Energy per pulse at 100% (J)

22 Window = 20 # simulation window (ps)

23 Steps = 100 # simulation steps

24 Points = 2**13 # simulation points

25 fibWL = pulseWL # Center WL of fiber (nm)
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26

27

28 beta2 , beta3 , beta4 = calculate_betas(Crystals.Sapphire ,pulseWL) # (ps^2/km)

,(ps^3/km),(ps^4/km)

29 Length = 15 # length in mm

30 EPP = 0.25*Full_EPP #Energy per Pulse as a percentage of Full_EPP

31 Gamma = 0.9E-03 # Gamma (1/(W km)

32 Raman = True # Enable Raman effect?

33 Steep = True # Enable self steepening?

34 alpha = 27.19443951 # attenuation coefficient in 1/m

35

36

37 # Create the pulse

38 pulse = pynlo.light.DerivedPulses.GaussianPulse(power = 1, # Power will be

scaled by set_epp

39 T0_ps = FWHM ,

40 center_wavelength_nm = pulseWL

,

41 time_window_ps = Window ,

42 NPTS = Points ,

43 frep_MHz = freq*1e-6,

44 power_is_avg = False)

45 # Set the pulse energy

46 pulse.set_epp(EPP)

47

48 # Create the fiber

49 fiber1 = pynlo.media.fibers.fiber.FiberInstance ()

50 fiber1.generate_fiber(Length * 1e-3, center_wl_nm=fibWL , betas=(beta2 , beta3 ,

beta4),

51 gamma_W_m=Gamma * 1e-3, gvd_units='ps^n/km',

gain=-alpha)

52

53 # Propagation

54 evol = pynlo.interactions.FourWaveMixing.SSFM.SSFM(local_error=0.005,

USE_SIMPLE_RAMAN=True ,

55 disable_Raman = np.logical_not(Raman),

56 disable_self_steepening = np.logical_not(Steep))

57

84



58 z, AW , AT , pulse_out = evol.propagate(pulse_in=pulse , fiber=fiber1 , n_steps=

Steps)

59 # From: https :// pynlo.readthedocs.io/en/latest/pynlo.html#pynlo -interactions -

fourwavemixing

60 # z (array of float)[U+FFFD]an array of positions along the fiber (in meters)

61 # AW (2D array of complex128)[U+FFFD]A 2D numpy array corresponding to the

intensities in each frequency bin for each step in the z-direction of the

fiber.

62 # AT (2D array of complex128)[U+FFFD]A 2D numpy array corresponding to the

intensities in each time bin for each step in the z-direction of the

fiber.

63 # pulse_out (PulseBase object)[U+FFFD]the pulse after it has propagated through

the fiber. This object is suitable for propagation through the next fiber

!

64

65 #### Ploting the results

66 import matplotlib.pyplot as plt

67 import matplotlib as mpl

68

69 def dB(num): #Decibel convertion. ONLY FOR THE WAVEPACKET !!!

70 return 10 * np.log10 ((np.abs(num)/np.max(np.abs(num)))**2)

71

72 fsize=14 #Font size of many of the labels

73 color_plot_threshold=20 # Threshold for the decibels in the color plot

74 FX_limit_low ,FX_limit_high=[285 ,295] #Lower and upper bounds of the spectrum

in the frequencies (THz)

75 FY_limit_low ,FY_limit_high=[-20,2] #Lower and upper bounds of the spectral

intensity (dB)

76

77 #Set the figure and subfigures

78 fig = plt.figure(figsize=(8,9))

79 ax0 = plt.subplot2grid ((2 ,2), (0, 0), rowspan=1)

80 ax1 = plt.subplot2grid ((2 ,2), (1, 0), rowspan=1, sharex=ax0)

81 ax2 = plt.subplot2grid ((2 ,2), (0, 1), rowspan=3)

82

83 plt.subplots_adjust(wspace=0.3)

84

85 for i,axis in enumerate ([ax0 ,ax1 ,ax2]):
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86 axis.tick_params(labelsize=12)

87

88 # Line plots

89

90 ax0.plot(pulse.F_THz , dB(pulse.AW), color = 'b', label="Input")

91 ax1.plot(pulse.F_THz , np.abs(pulse.AW)/np.max(np.abs(pulse.AW)), color =

'b', label="Input")

92

93 ax0.plot(pulse_out.F_THz , dB(pulse_out.AW), color = 'r', label="Output")

94 ax1.plot(pulse_out.F_THz , np.abs(pulse_out.AW)/np.max(np.abs(pulse_out.AW)

), color = 'r', label="Output")

95

96 ax0.set_ylabel('Intensity (dB)', fontsize=fsize)

97 ax1.set_ylabel('Intensity (a.u.)', fontsize=fsize)

98

99 ax0.set_ylim(FY_limit_low ,FY_limit_high)

100 ax0.set_xlim(FX_limit_low ,FX_limit_high)

101 ax1.set_xlim(FX_limit_low ,FX_limit_high)

102

103 ax1.set_xlabel('Frequency (THz)', fontsize=fsize)

104

105 #Color plots

106 F = pulse.F_THz # Frequency grid of the pulse (THz)

107 zW = dB(np.transpose(AW)[:, (F > 0)] ) # Intensity grid for the color plot

108 extent = (np.min(F[F > 0]), np.max(F[F > 0]), 0, Length)

109 ax2.imshow(zW , extent=extent ,

110 vmin=np.max(zW) - color_plot_threshold , vmax=np.max(zW),

111 aspect='auto', origin='lower ', cmap="plasma")

112

113 ax2.set_ylabel('Propagation distance (mm)', fontsize=fsize , labelpad=5)

114 ax2.set_xlabel('Frequency (THz)', fontsize=fsize)

115 ax2.set_xlim(FX_limit_low ,FX_limit_high)

116 plt.draw() #Python calculates the ticks of ax1 so they become callabel

117 ax2.set_xticks(ax1.get_xticks ()[1:-1])

118 ax2.set_xticklabels(ax1.get_xticklabels ()[1:-1])

119

120 #Color bar

121 norm = mpl.colors.Normalize(vmin=np.max(zW) - color_plot_threshold , vmax=np.
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max(zW)) #

122 cbar2=fig.colorbar(mpl.cm.ScalarMappable(norm=norm , cmap="plasma"), ax=ax2 ,

label='Intensity (dB)')

123 cbar2.ax.tick_params(labelsize=12)

124 cbar2.set_label(label='Intensity (dB)',fontsize=fsize ,rotation=-90)

125 cbar2.ax.get_yaxis ().labelpad = 15

126

127 #Legend

128 handles ,labels = ax0.get_legend_handles_labels ()

129 legend0 = ax0.legend(handles ,labels ,loc='upper left')

130

131 plt.show()

Listing B.3: Contents of Crystals.py.

1 # -*- coding: utf -8 -*-

2 """

3 Sellmeier coefficients and equations for multiple crystals

4 This file works with the pyNLO module.

5

6 https :// github.com/pyNLO/PyNLO

7 https :// pynlo.readthedocs.io/en/latest/index.html

8 """

9 from __future__ import absolute_import

10 from __future__ import division

11 from __future__ import print_function

12

13 import numpy as np

14 from pynlo.media.crystals.CrystalContainer import Crystal

15

16 class Sapphire(Crystal):

17 def __init__(self, **params):

18 Crystal. __init__(self, params)

19

20 """ Sellmeir coefficients from:

21 M. J. Dodge , "Refractive Index" in Handbook of Laser Science and

Technology , Volume IV ,

22 Optical Materials: Part 2, CRC Press , Boca Raton , 1986, p. 30
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23 also depicted in https :// refractiveindex.info/?shelf =3d&book=crystals

&page=sapphire """

24 """C's measured in micron square """

25 self.B0 = 1

26 self.B1 = 1.4313493

27 self.C1 = 0.0726631**2

28 self.B2 = 0.65054713

29 self.C2 = 0.1193242**2

30 self.B3 = 5.3414021

31 self.C3 = 18.028251**2

32

33 def n(self, wl_nm , axis = None):

34 wl_um_s = (wl_nm * 1.0e-3)**2

35 return np.sqrt(self.B0+

36 self.B1*wl_um_s/(wl_um_s-self.C1)+

37 self.B2*wl_um_s/(wl_um_s-self.C2)+

38 self.B3*wl_um_s/(wl_um_s-self.C3)

39 )

40

41 class YAG(Crystal):

42 def __init__(self, **params):

43 Crystal. __init__(self, params)

44

45 """ Sellmeir coefficients from:

46 D. E. Zelmon , D. L. Small and R. Page. Refractive -index measurements

of undoped yttrium

47 aluminum garnet from 0.4 to 5.0[U+FFFD]m, Appl. Opt. 37, 4933 -4935 (1998)

48 also depicted in https :// refractiveindex.info/?shelf=main&book=

Y3Al5O12&page=Zelmon """

49 """C's measured in micron square """

50 self.B0 = 1

51 self.B1 = 2.28200

52 self.C1 = 0.01185

53 self.B2 = 3.27644

54 self.C2 = 282.734

55

56 def n(self, wl_nm , axis = None):

57 wl_um_s = (wl_nm * 1.0e-3)**2
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58 return np.sqrt(self.B0+

59 self.B1*wl_um_s/(wl_um_s-self.C1)+

60 self.B2*wl_um_s/(wl_um_s-self.C2)

61 )

62

63 class CaF2(Crystal):

64 def __init__(self, **params):

65 Crystal. __init__(self, params)

66

67 """ Sellmeir coefficients from:

68 I. H. Malitson. A redetermination of some optical properties of

calcium fluoride ,

69 Appl. Opt. 2, 1103 -1107 (1963) also depicted in

70 https :// refractiveindex.info/? shelf=main&book=CaF2&page=Malitson """

71 """C's measured in micron square """

72 self.B0 = 1

73 self.B1 = 0.5675888

74 self.C1 = 0.050263605**2

75 self.B2 = 0.4710914

76 self.C2 = 0.1003909**2

77 self.B3 = 3.8484723

78 self.C3 = 34.649040**2

79

80 def n(self, wl_nm , axis = None):

81 wl_um_s = (wl_nm * 1.0e-3)**2

82 return np.sqrt(self.B0+

83 self.B1*wl_um_s/(wl_um_s-self.C1)+

84 self.B2*wl_um_s/(wl_um_s-self.C2)+

85 self.B3*wl_um_s/(wl_um_s-self.C3)

86 )

87

88 class Fused_Silica(Crystal):

89 def __init__(self, **params):

90 Crystal. __init__(self, params)

91

92 """ Sellmeir coefficients from:

93 I. H. Malitson. Interspecimen comparison of the refractive index of

fused silica ,
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94 J. Opt. Soc. Am. 55, 1205 -1208 (19) also depicted in

95 https :// refractiveindex.info/? shelf=glass&book=fused_silica&page=

Malitson """

96 """C's measured in micron square """

97 self.B0 = 1

98 self.B1 = 0.6961663

99 self.C1 = 0.0684043**2

100 self.B2 = 0.4079426

101 self.C2 = 0.1162414**2

102 self.B3 = 0.8974794

103 self.C3 = 9.896161**2

104

105 def n(self, wl_nm , axis = None):

106 wl_um_s = (wl_nm * 1.0e-3)**2

107 return np.sqrt(self.B0+

108 self.B1*wl_um_s/(wl_um_s-self.C1)+

109 self.B2*wl_um_s/(wl_um_s-self.C2)+

110 self.B3*wl_um_s/(wl_um_s-self.C3)

111 )
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